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Can it recognize a cow on the beach?

Generalization is driven by feature priors
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What factors influence learned features?

How can we harness this emerging space of feature
priors?
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Feature priors as distinct perspectives on data

Train models with
diverse feature priors

Correlation ot correct predictions

shape-biased

texture-biased

CIFAR-10
Standard Canny Sobel BagNet
Standard 0.598 0.237  0.259 0.38
Canny 0545 0.324 0.143
Sobel 0594  0.173
BagNet 0.655

Models with different feature priors make different mistakes



Feature priors as distinct perspectives on data

Train models with Diverse ensembles perform better

diverse feature priors

-.-.'- \ Single Model Single Prior Ensemble Different Prior Ensemble

(c) Canny (d) BagNet .
\ texture-biased
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Models with different feature priors make different mistakes




Feature priors as distinct perspectives on data

How do we leverage this during training?
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Confirmation bias: Pseudo-labels
can propagate undesirable features




Self-training and confirmation bias

Can we mitigate this through leveraging diverse
feature priors?
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Co-training with diverse feature priors

Key idea: Different feature priors lead to
models that learn different features

Shape-biased
model
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Co-training with diverse feature priors

So: Models can correct each other during training




Indeed: Co-training with diverse
features helps
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Also: Helps with avoiding learning
spurious correlations

Task: CelebA gender, but all women are blonde during training
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— Models can steer each other away from misleading features




Key takeaway



Key takeaway

Incorporating diverse feature priors into training can improve
generalization and help avoid spurious correlations



Key takeaway

Incorporating diverse feature priors into training can improve
generalization and help avoid spurious correlations

Going forward

What other feature priors can we use here?

What are other ways to combine feature priors?



