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How can we harness this emerging space of feature 
priors? 
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Feature priors as distinct perspectives on data

Models with different feature priors make different mistakes

Train models with 
diverse feature priors

shape-biased
texture-biased

Diverse ensembles perform better

How do we leverage this during training?
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can propagate undesirable features

Can we mitigate this through leveraging diverse 
feature priors?
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Key idea: Different feature priors lead to  
models that learn different features
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So: Models can correct each other during training



Indeed: Co-training with diverse 
features helps

Boost from  
prior diversity
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Also: Helps with avoiding learning 
spurious correlations

Task: CelebA gender, but all women are blonde during training

→ Models can steer each other away from misleading features
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Key takeaway

Incorporating diverse feature priors into training can improve 
generalization and help avoid spurious correlations

Going forward

What other feature priors can we use here?

What are other ways to combine feature priors?


