

GenLabel: Mixup Relabeling using Generative Models

Jy-yong Sohn, Liang Shang, Hongxu Chen, Jaekyun Moon (KAIST), Dimitris Papailiopoulos, Kangwook Lee

Preview

- Goal: Data augmentation (DA) for robust ML
- Motivation: Classifiers are brittle to adversarial attacks

Key results:

Preliminary: Mixup

```
cat dog
[ 1 0 ]
```


Feature \boldsymbol{x} Label \boldsymbol{y}

cat dog [0 1]

Feature x'Label y'

Preliminary: Mixup

Feature \boldsymbol{x} Label \boldsymbol{y}

cat dog [0.5 0.5]

Feature x'Label y'

Feature
$$x^{\text{mix}} = \lambda x + (1 - \lambda)x'$$

Label $y^{\text{mix}} = \lambda y + (1 - \lambda)y'$

Mixup: Convex combination in feature & label domain

Preliminary: Mixup

cat dog
[1 0]

Feature \boldsymbol{x} Label \boldsymbol{y}

cat dog [0.5]

cat dog 0 1]

Feature x'Label y'

Feature
$$x^{\text{mix}} = \lambda x + (1 - \lambda)x'$$

Label $y^{\text{mix}} = \lambda y + (1 - \lambda)y'$

Train with mixup sample improves accuracy/robustness

Problem: Label Conflict

Mixing (x_1, y_1) and (x_3, y_3) generates

$$x^{\text{mix}} = 0.5x_1 + 0.5x_3 = 0$$
$$y^{\text{mix}} = 0.5y_1 + 0.5y_3 = 1$$

Problem: Label Conflict

Mixing (x_1, y_1) and (x_3, y_3) generates

$$x^{\text{mix}} = 0.5x_1 + 0.5x_3 = 0$$
$$y^{\text{mix}} = 0.5y_1 + 0.5y_3 = 1$$

Our Solution: Re-Label

Mixing (x_1, y_1) and (x_3, y_3) generates

$$x^{\text{mix}} = 0.5x_1 + 0.5x_3 = 0$$
$$y^{\text{mix}} = 0.5y_1 + 0.5y_3 = 1$$

Step 1. Learn Distribution

Step 2. Generate Mixup Sample

Step 3. Label Mixup Sample

$$p_1(x)$$
 $p_1(x)$
 $p_1(x)$
 $x_1 = -1$
 $y_1 = 1$
 $x_1 = -1$
 $x_2 = 0$
 $x_3 = +1$
 $x_3 = 1$

$$y^{\text{mix}} = \frac{p_1(x^{\text{mix}})}{p_0(x^{\text{mix}}) + p_1(x^{\text{mix}})} \cdot 1 \stackrel{\succeq}{=} 0$$

Step 3. Label Mixup Sample

GenLabel

(Generative Model-based Labeling)

$$y^{\text{mix}} = \frac{p_1(x^{\text{mix}})}{p_0(x^{\text{mix}}) + p_1(x^{\text{mix}})} \cdot 1 \stackrel{\triangleright}{=} 0$$

Key Results: Margin

Top-1 label of mixup

Decision boundary of mixup

Top-1 label of mixup+GenLabel

Decision boundary of mixup+GenLabel

Key Results: Accuracy

Methods \ OpenML Dataset ID	721	777	792	830	855	913	1413	1498
Vanilla	79.67	58.67	73.20	77.60	63.33	70.80	95.56	66.91
AdaMixup	80.33	64.00	73.87	78.40	66.67	70.53	92.44	66.76
Mixup	79.33	62.67	73.47	76.27	66.00	69.87	88.00	66.76
Mixup + Excluding MI	79.67	62.67	74.53	78.13	66.40	71.47	93.33	66.33
Mixup + GenLabel (GM)	81.00	58.67	75.47	86.13	66.40	71.47	96.00	67.63
Mixup + GenLabel (KDE)	79.67	58.67	75.87	77.33	67.60	72.67	96.00	66.33
Mixup + GenLabel (CV)	80.33	64.00	75.60	84.53	67.33	73.20	96.44	67.77

GenLabel improves accuracy of mixup up to 8 – 10%

Key Results: Robustness

Methods \ OpenML ID	446	468	683	755	763	1413
Vanilla	29.67	34.55	51.11	41.05	64.27	68.00
AdaMixup	30.33	37.27	51.11	37.89	63.20	67.11
Mixup	30.67	37.27	50.00	36.84	65.07	67.56
Mixup + Excluding MI	31.67	31.82	52.22	38.95	63.20	70.67
Mixup + GenLabel (GM)	37.00	42.73	52.22	43.16	61.87	71.11
Mixup + GenLabel (NN)	38.00	32.73	46.67	43.16	66.93	77.33

GenLabel improves robustness of mixup up to 7 – 10%

^{*} black-box attack, $\varepsilon = 0.1$

Key Results: Robustness

[Thm] For logistic regression model & FC ReLU networks,

Mixup loss ≥ Mixup+GenLabel loss ≥ Adversarial loss

(Tighter Upper Bound)

 ϕ : angle of the model [π radian]

Full version available at https://arxiv.org/pdf/2201.02354.pdf

Hall E, Poster Session 2, #525