

Proximal and Federated Random Reshuffling

Konstantin Mishchenko, Ahmed Khaled, Peter Richtárik

Collaborators

Konstantin Mishchenko

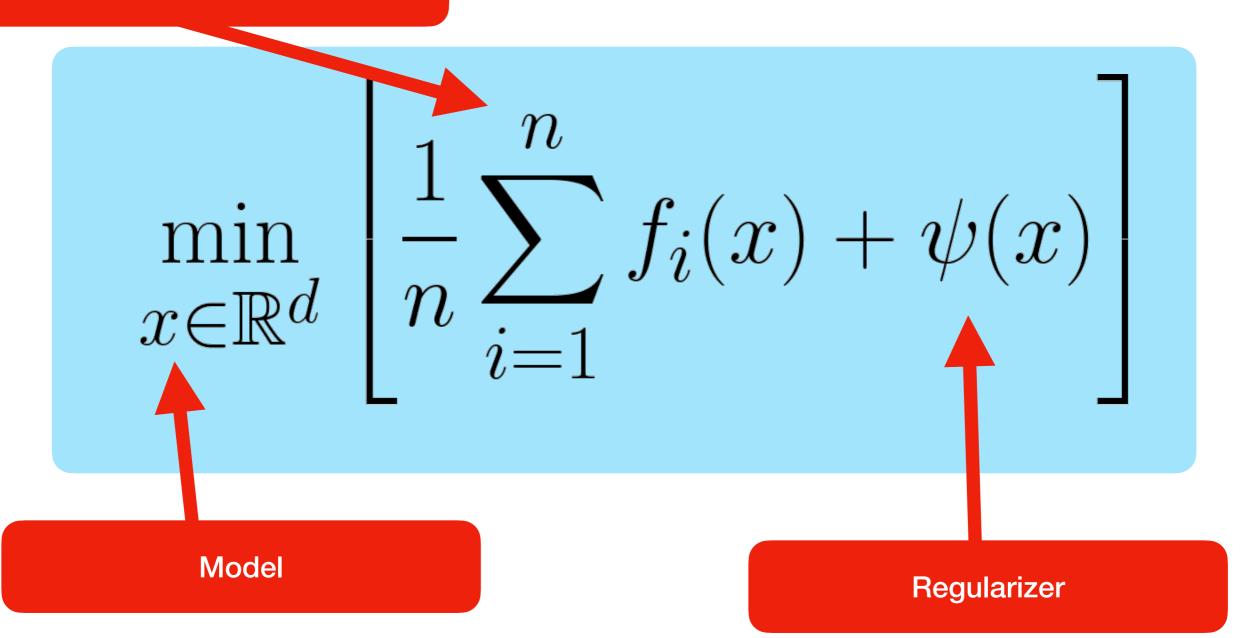
Postdoctoral Researcher

Inria Sierra

Peter Richtárik
Professor, KAUST

Problem definition

Number of data points



Proximal mapping

$$\min_{\boldsymbol{x} \in \mathbb{R}^{d \cdot M}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{x}) + \psi(\boldsymbol{x})$$

Proximal mapping

$$\min_{\boldsymbol{x} \in \mathbb{R}^{d \cdot M}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{x}) + \psi(\boldsymbol{x})$$

$$\operatorname{prox}_{\gamma\psi}(x) \stackrel{\text{def}}{=} \arg\min_{z} \left\{ \gamma\psi(z) + \frac{1}{2} \|z - x\|^{2} \right\}$$

Proximal mapping

$$\min_{\boldsymbol{x} \in \mathbb{R}^{d \cdot M}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{x}) + \psi(\boldsymbol{x})$$

$$\operatorname{prox}_{\gamma\psi}(x) \stackrel{\text{def}}{=} \arg\min_{z} \left\{ \gamma\psi(z) + \frac{1}{2} \|z - x\|^{2} \right\}$$

We assume the proximal operator is expensive

Examples of expensive proximal operators

Communication in federated and distributed optimization (via the consensus regularizer)

Imaging inverse problems

Proximal SGD

Algorithm 2 Proximal SGD

Require: Stepsizes $\gamma_k > 0$, initial vector $x_0 \in \mathbb{R}^d$, number of steps K

- 1: **for** steps k = 0, 1, ..., K 1 **do**
- 2: Sample i_k uniformly at random from [n]
- 3: $x_{k+1} = \operatorname{prox}_{\gamma_k \psi}(x_k \gamma_k \nabla f_{i_k}(x_k))$

Prox evaluation every iteration (too expensive!)

Proximal GD

Algorithm 3 Proximal GD

- 1: **Input:** Stepsizes $\gamma_k > 0$, initial vector $x_0 \in \mathbb{R}^d$, number of steps K
- 2: **for** steps k = 0, 1, ..., K 1 **do**
- 3: $x_{k+1} = \operatorname{prox}_{\gamma_k \psi}(x_k \gamma_k \nabla f(x_k))$
- 4: end for

Full gradient evaluation every iteration (too expensive!)

Prox-RR

Algorithm 1 Proximal Random Reshuffling (ProxRR)

- 1: Input: Stepsizes $\gamma_t > 0$, initial vector $x_0 \in \mathbb{R}^d$, number of epochs T
- 2: for epochs t = 0, 1, ..., T 1 do
- 3: Sample a permutation $\pi = (\pi_0, \pi_1, \dots, \pi_{n-1})$ of [n]
- 4: $x_t^0 = x_t$
- 5: **for** $i = 0, 1, \dots, n-1$ **do**
- 6: $x_t^{i+1} = x_t^i \gamma_t \nabla f_{\pi_i}(x_t^i)$

Stochastic gradients used during epoch

- 7: **end for**
- 8: $x_{t+1} = \operatorname{prox}_{\gamma_t n \psi}(x_t^n)$

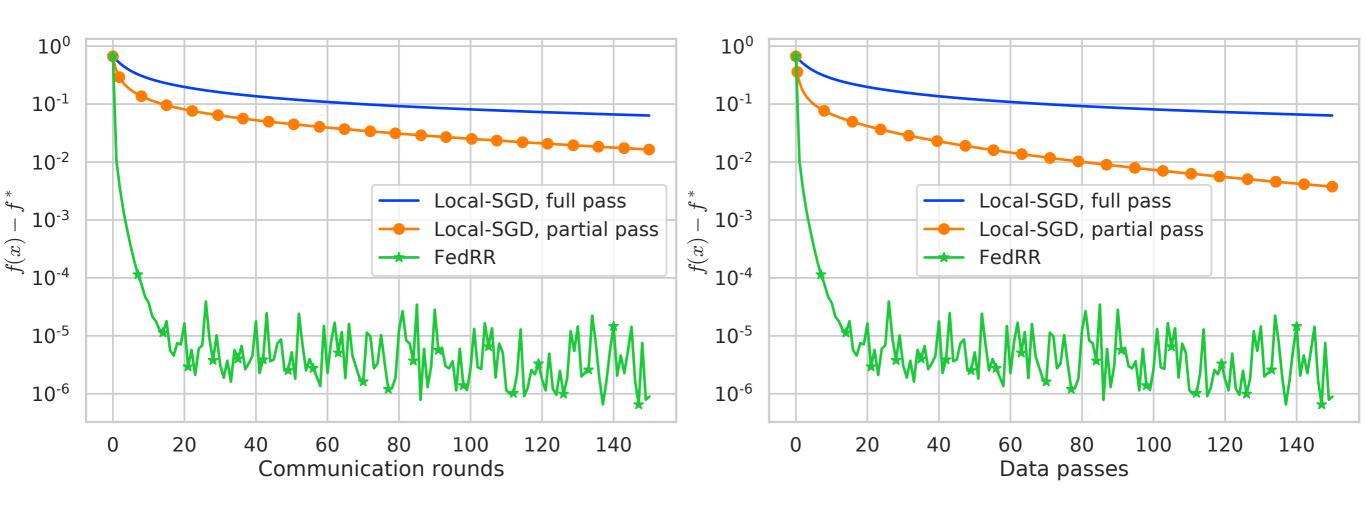
Proximal only once per epoch

9: end for

ProxRR: Theory Results

- Proximal complexity (# of proximal step calls) is significantly faster than SGD for strongly convex objectives
- Compares favorably to GD and SVRG in some settings
- Nonconvex case also covered!

Experiments: federated learning (logistic regression w/ l2 regularization)



More things in the paper

- 1. Importance sampling
- 2. Decreasing stepsizes
- 3. Details for federated learning
- 4. Bounds for iid and non-iid data