Why the Rich Get Richer?

On the Balancedness of Random Partition Models

Changwoo Lee

(joint work with Dr. Huiyan Sang)
Department of Statistics, Texas A&M University
ICML 2022

Bayesian Methods for Clustering Problems

Mixture models: Finite mixture vs. Dirichlet process (DP) mixture Topic models: Latent Dirichlet allocation (LDA) vs. Hierarchical DP

and many others...

Q. Different models leads to different clustering results. Why? How to choose?

A. We study "balancedness" of random partitions to understand those differences.

Random Partition Models

Probability distribution on the space of partition. Ex) Partitons of {1,2,3}:

π	$\{\{1,2,3\}\}$	$\{\{1,2\},\{3\}\}$	$\{\{1,3\},\{2\}\}$	$\{\{1\},\{2,3\}\}$	$ \{\{1\}, \{2\}, \{3\}\} $
$\boxed{\mathbb{P}(\Pi_3 = \pi)}$	p_1	p_2	p_3	p_4	p_5

Act as a prior distribution for the Bayesian clustering methods.

Two important, common assumptions:

- (Finite) Exchangeability assumption $p_2 = p_3 = p_4$.
- Projectivity assumption

Random Partition Models

Probability distribution on the space of partition. Ex) Partitons of {1,2,3}:

π	$\{\{1, 2, 3\}\}$	$\{\{1,2\},\{3\}\}$	$\{\{1,3\},\{2\}\}$	$\{\{1\},\{2,3\}\}$	$\{\{1\},\{2\},\{3\}\}$
$\mathbb{P}(\Pi_3 = \pi)$	p_1	p_2	p_3	p_4	p_5

Act as a prior distribution for the Bayesian clustering methods.

Two important, common assumptions:

- (Finite) **Exchangeability assumption**
- Projectivity assumption

↓ (marginalize out 3)

$$\begin{array}{c|ccc} \pi & & \{\{1,2\}\} & \{\{1\},\{2\}\} \\ \mathbb{P}(\Pi_2 = \pi) & p_1 + p_2 & p_3 + p_4 + p_5 \end{array}$$

EPPF and Gibbs partition

Under exchangeability, p.m.f can be written as an EPPF

$$p(n_1,\ldots,n_k)$$

$$p(\mathbf{n} = (3)) = p_1$$
 $p(\mathbf{n} = (2, 1)) = p_2$ $p(\mathbf{n} = (1, 1, 1)) = p_5$

Gibbs partition:
$$\Pi_n \sim \mathsf{Gibbs}_{[n]}(\boldsymbol{V}, \boldsymbol{W})$$
 if $p^{(n)}(n_1, \dots, n_k) = V_{n,k} \prod_{j=1}^k W_{n_j}$ (product form)

Examples of Gibbs partition: Dirichlet-multinomial, Chinese restaurant process, ...

Balancedness of Fixed Partitions

Reverse dominance order ≺, based on one-step downshift(s).

(6,3,1) < (5,3,2) (more balanced)

This induces *partial* order relation:

Q. What about the balancedness of RANDOM partition?

Balancedness of Exchageable Random Partitions

Definition 3.1. Let $p^{(n)}$ be an EPPF of a finitely exchangeable random partition Π_n on [n]. Then call Π_n and $p^{(n)}$

- balance-averse if $n \prec n' \implies p^{(n)}(n) \ge p^{(n)}(n')$ balance-seeking if $n \prec n' \implies p^{(n)}(n) \le p^{(n)}(n')$

Main Theorem: Balancedness of Gibbs Partitions

Theorem 3.2. Let p⁽ⁿ⁾ be an EPPF of Gibbs_[n](V, W). Then for any n = 1, 2, ..., p⁽ⁿ⁾ is
balance-averse if and only if W is log-convex,
balance-seeking if and only if W is log-concave,

Log-convexity of $W = (W_s)_{s=1}^{\infty}$ determines the balancedness of Gibbs partition.

Necessary and sufficient condition, easy-to-check.

"Rich-get-richer" property

"Rich-get-richer" property is shared across many existing random partition models. Example: Chinese restaurant process (CRP)

https://topicmodels.west.uni-koblenz.de/ckling/tmt/crp.html?parameters=0.5&dp=

Why the rich get richer? Exchangeability + Projectivity!

For Gibbs partition (exchangeable with product-form),

Corollary 3.3. Let $\Pi_{n+1} \sim \mathsf{Gibbs}_{[n+1]}(V, W)$. Given the cluster memberships of the first n datapoints $\mathbf{z}_{1:n}$ with k clusters, the reallocation rule for the next datapoint is

$$\mathbb{P}(z_{n+1} = j | \mathbf{z}_{1:n}) \propto \begin{cases} f(n_j) & \text{if } j = 1, \dots, k \\ g(n, k) & \text{if } j = k+1 \end{cases}$$
 (5)

Then f is an increasing (decreasing) function over \mathbb{N} if and only if Π_{n+1} is balance-averse (seeking) for any $n \in \mathbb{N}$.

Rich-get-richer ⇔ Balance-averse Rich-get-poorer ⇔ Balance-seeking **Corollary 3.4.** Let $p^{(n)}$ be an EPPF of infinitely exchangeable Gibbs partition. Then $p^{(n)}$ is always balance-averse; i.e., for two integer partitions $n, n' \in \mathcal{I}_n^k$ with same size $k \leq n$,

$$m{n} \prec m{n}' \implies p^{(n)}(m{n}) \geq p^{(n)}(m{n}')$$

with equality holds only if $\sigma = -\infty$.

Product form Exchangeability + Projectivity

⇒ Always balance-averse!

(i.e. Always the rich-get-richer!)

Want an exchangeable, balance-seeking partition? May need to sacrifice projectivity.

Comparing Balancedness between Gibbs Partitions

Definition 3.7 (B-sequence). $(B_s(\boldsymbol{W}))_{s\geq 2}$ is a B-sequence of $\mathsf{Gibbs}_{[n]}(\boldsymbol{V},\boldsymbol{W})$ for $n\in\mathbb{N}$, a sequence of extended real numbers which only depends on \boldsymbol{W} , defined as

$$B_s(\mathbf{W}) = -s(\log W_{s+1} - 2\log W_s + \log W_{s-1}) \quad (9)$$

with the provision that $B_s(\mathbf{W}) = +\infty$ if $W_{s+1} = 0$.

B-sequence is an approximation of the slope of log-EPPF versus Shannon index plot.

Negative (Positive) B-sequence: balance-averse (balance-seeking).

$$\mathsf{Gibbs}_{[n]}(\boldsymbol{V}, \boldsymbol{W})$$
 is more balanced than $\mathsf{Gibbs}_{[n]}(\boldsymbol{V}', \boldsymbol{W}')$ if and only if $B_s(\boldsymbol{W}) \geq B_s(\boldsymbol{W}')$ for all $s \geq 2$.

Comparison: mixture model

DP mixture ($\sigma' = 0$) is more unbalanced than the (mixture of) finite mixture ($\sigma < 0$), by the B-sequence comparison $0 > B_s(\sigma) > B_s(\sigma')$.

Explains why DP mixture creates tiny extra clusters compared to finite mixture model.

Unbounded number of clusters in DP-based models are often emphasized, however it comes with a cost: the resulting partition becomes more unbalanced.

Insight: topic model

LDA uses Dirichlet-multinomial random partition for per-document topic distribution, which is **balance-averse** (negative B-sequence).

Per-document topic distribution is **naturally unbalanced** (e.g. news article).

Demonstrates that LDA is a highly suitable for topic modeling application.

In the paper, we also provide an example of balance-seeking random partition and its application to entity resolution tasks.

Thank you!