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Active Learning (AL) and Contribution

Aims at reducing data requirement in (statistical) inference
by designing algorithms that can learn and generalize from
small subset of training data

→ Pool-based AL:
Algorithm has prior access to large unlabeled pool of data points

→ Batch Pool-based AL:
Pool-based AL where labels are requested in sequence of batches

Contribution:

First theoretical results that carefully tradeoff

informativeness and diversity to rigorously quantify

statistical performance in batch pool-based AL
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B = 3
Batch Pool-based AL

Batch pool-based AL:

• Given unlabeled Pool ⊆ X of points
and batch size B, select subset of
points (circles) to query labels of

• Train model using the current batch, delete
non-informative points (crosses)

• Repeat until stopping criterion fulfilled
(e.g. Pool is empty)

• Batch AL: selection of points within every batch
cannot depend on labels gathered on that batch
but only on past batches

• Alg to tradeoff informativeness vs. diversity

• The larger B the harder the problem
(smaller adaptivity power)
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Problem settings

• Binary classification yt ∈ Y = {±1}

• Data {(xt, yt)}Tt=1 drawn i.i.d. according to unknown distribution on X ×Y

• Parametric realizable scenario

P(y = 1 |x) = h∗(x), h∗ ∈ H
for some (large) function space H
(reasonable in DNN-based overparametrized regimes)

• Work on noisy (generalized) linear model

• Low noise condition

Pr

(
|h∗(x)−

1

2
| < ε

)
≤ εα, ε ∈ (0, ε0)
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Performance measure

• Excess risk of model ĥ : X → [0,1] w.r.t. 0/1 loss:

RT(ĥ) = P
(
{y 6= sgn(ĥ(x)− 1/2)}

)
− P ({y 6= sgn(h∗(x)− 1/2)})

• Want to compute model ĥ s.t.

– small RT(ĥ)

– small NT (total no. of queried labels), and

– small adaptivity
(as large B as possible, still retaining good performance)
→ twofold notion:
1. no. of interactions with labelers
2. no. of times we retrain model
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Diversity measure

Model-based diversity D(x, S):
Quantifies how diverse unlabeled point x is w.r.t. unlabeled set S

• (Generalized) Linear Model

D2(x, S) = x>
(
I +

∑
z∈S

zz>
)−1

x

• D(x, S) is maximized when x is perpendicular to all z ∈ S

• Generalization to non-linear setting

D2(x, S) = sup
f,g∈H

(f(x)− g(x))2∑
z∈S(f(z)− g(z))2 + 1

c.f. “Fast Rates in Pool-Based Batch Active Learning”
extended version of this paper:
https://arxiv.org/abs/2202.05448
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Generic Algorithm

Stage `:

• Q` ← ∅
• Pick x ∈ argmaxx∈Pool`−1

D(x,Q`)

• Q` ← Q` ∪ {x}

• repeat until all remaining x ∈ Pool`−1 are s.t. D(x,Q`) ≤ 1/2`

• Query all labels in Q` and compute predictor ĥ` based on those labels

• Eliminate from Pool`−1 both queried points and points on which we can
confidently predict sign of h∗ − 1/2 :

Pool` ← Pool`−1 \ {x ∈ Q` ∨ x ∈ Pool`−1 : |ĥ`(x)− 1/2| ≥ 1/2`}

Stop: when 2` > |Pool`|
Output: single model ĥ only trained on pseudo-labels at each stage

Connection to generalization: Diversity measure D(x, S) should be s.t

|ĥ`(x)− h∗(x)| ≤ D(x,Q`) ∀x
so pseudo-labels are (w.h.p.) accurate
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Theoretical guarantees

• Easily adapt to constant batch size B

B

1

2

2

1

B BB
• W.h.p. excess risk RT . T−

α+1

α+2

• Total no. of labels NT bounded by B + T
2

α+2

• Rate of convergence:

RT(NT) ≈ N−
α+1

2

T

minimax rate under VC classes

• Can afford batch size B ≈ T
2

α+2

• No. of stages (i.e., no. of retrainings):

logT

α+ 2
+ log logT

(w.h.p.)
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See you at the poster session!!
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