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○ Let H(k) be the set of all k-piece histograms over [n]

○ Goal: Using small space, find a f ∈ H(k’) s.t.

err(f, P) < minf*∈H(k) err(f*, P) + ε
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err(f, P) < minf*∈H(k) err(f*, P) + ε

○ L1 error over the domain: err(f, P) = ∑i ∈[n]|f(i) - P(i)|

○ Measures error across all domain elements, regardless of whether 
approximating those elements is important for downstream applications

○ Simple, sparse distributions cannot be approximated well by histograms 
under this notion of error

○ L1 error over the support: err(f, P) = ∑i ∈supp(P)|f(i) - P(i)|

○ “Support-aware” error is a natural definition that captures simple 
structure in sparse data
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Check out our paper and poster!


