

Streaming Algorithms for Support-Aware Histograms

Justin Chen, Piotr Indyk, Tal Wagner

Histograms in Data Streams

- Stream (insertion/deletion) of data points x_1, x_2, \dots, x_m in $[n]$, defining an empirical distribution P over $[n]$

Histograms in Data Streams

- Stream (insertion/deletion) of data points x_1, x_2, \dots, x_m in $[n]$, defining an empirical distribution P over $[n]$
- Histogram (piecewise constant) approximations of P are useful summaries of the distribution
- Succinctly capture locality in the distribution and are easily interpretable

Histograms in Data Streams

- Stream (insertion/deletion) of data points x_1, x_2, \dots, x_m in $[n]$, defining an empirical distribution P over $[n]$
- Histogram (piecewise constant) approximations of P are useful summaries of the distribution
- Succinctly capture locality in the distribution and are easily interpretable
- Let $H(k)$ be the set of all k -piece histograms over $[n]$
- **Goal:** Using small space, find a $f \in H(k')$ s.t.

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

Choosing an error function

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

Choosing an error function

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- L1 error over the *domain*: $\text{err}(f, P) = \sum_{i \in [n]} |f(i) - P(i)|$

Choosing an error function

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- L1 error over the *domain*: $\text{err}(f, P) = \sum_{i \in [n]} |f(i) - P(i)|$
 - Measures error across all domain elements, regardless of whether approximating those elements is important for downstream applications
 - Simple, sparse distributions cannot be approximated well by histograms under this notion of error

Choosing an error function

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

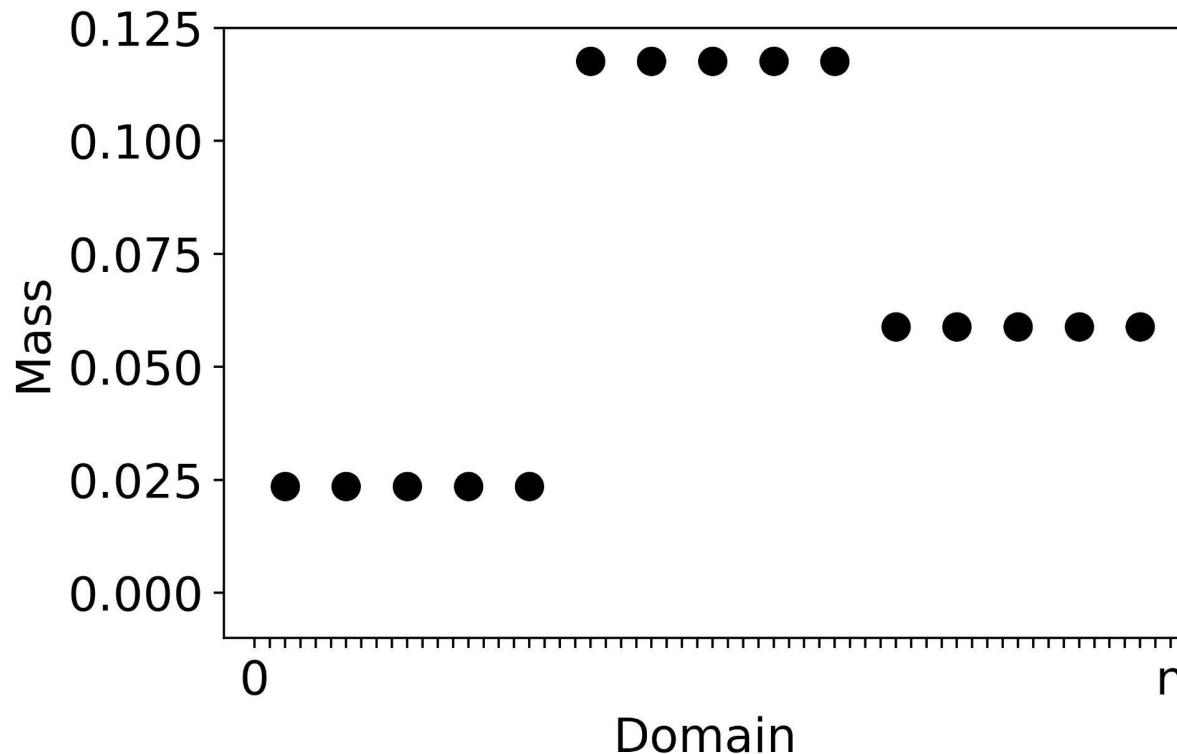
- L1 error over the *domain*: $\text{err}(f, P) = \sum_{i \in [n]} |f(i) - P(i)|$
 - Measures error across all domain elements, regardless of whether approximating those elements is important for downstream applications
 - Simple, sparse distributions cannot be approximated well by histograms under this notion of error
- L1 error over the *support*: $\text{err}(f, P) = \sum_{i \in \text{supp}(P)} |f(i) - P(i)|$

Choosing an error function

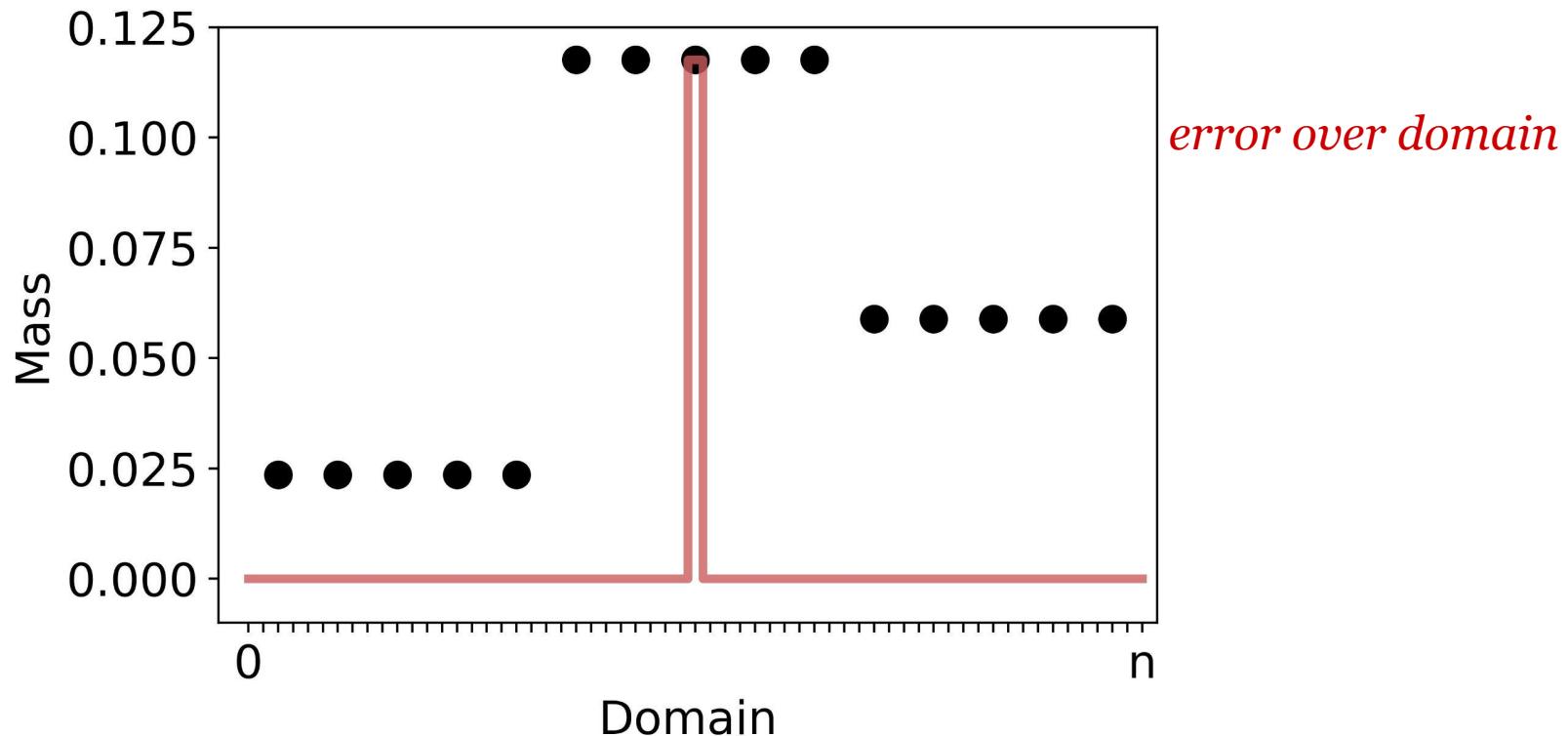
$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- L1 error over the *domain*: $\text{err}(f, P) = \sum_{i \in [n]} |f(i) - P(i)|$
 - Measures error across all domain elements, regardless of whether approximating those elements is important for downstream applications
 - Simple, sparse distributions cannot be approximated well by histograms under this notion of error
- L1 error over the *support*: $\text{err}(f, P) = \sum_{i \in \text{supp}(P)} |f(i) - P(i)|$
 - “Support-aware” error is a natural definition that captures simple structure in sparse data

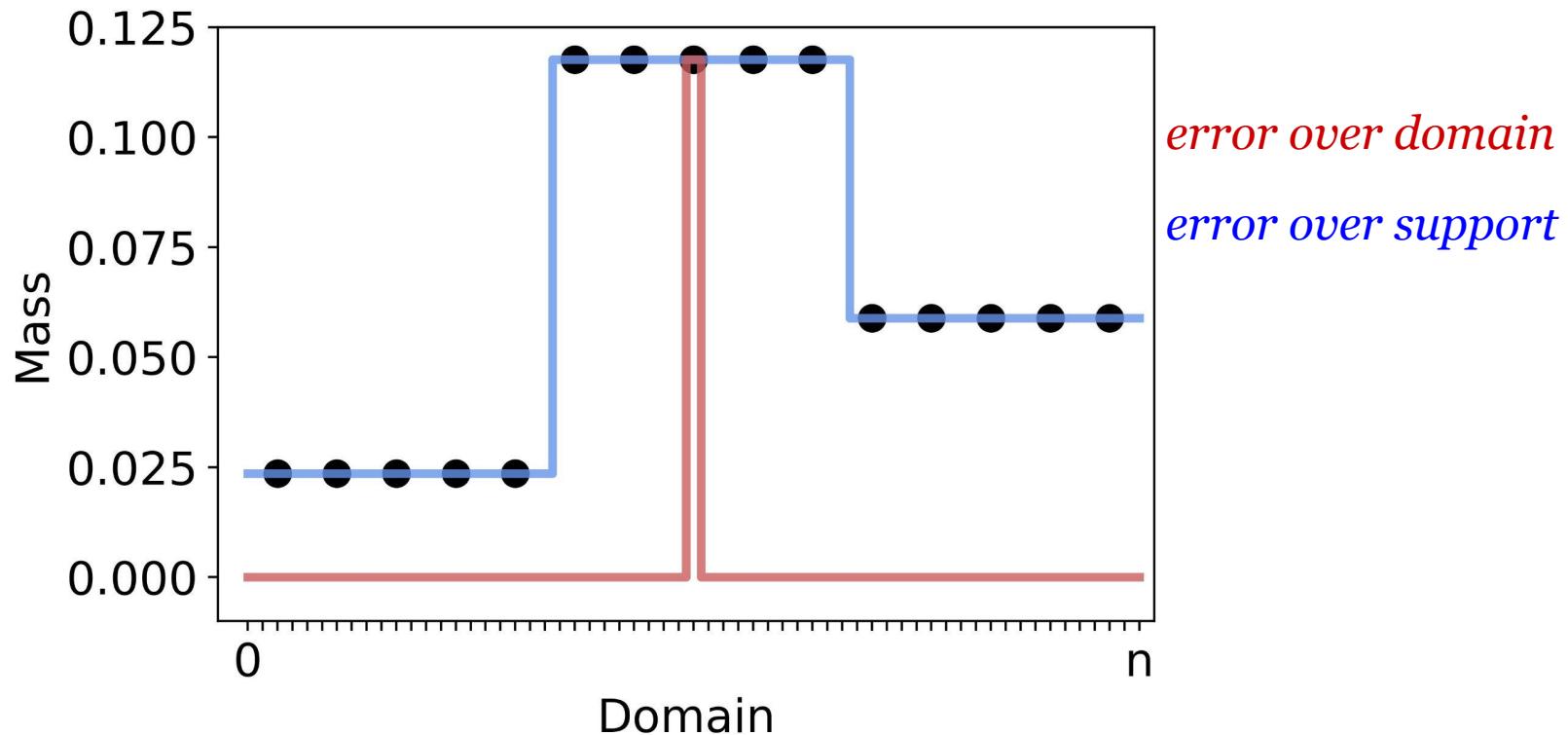
A simple example (3-piece histogram)



A simple example (3-piece histogram)



A simple example (3-piece histogram)



Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- Streaming algorithms for *support-aware* error cannot achieve multiplicative error guarantees (reduction from Set Disjointness)

Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- Streaming algorithms for *support-aware* error cannot achieve multiplicative error guarantees (reduction from Set Disjointness)
- One pass algorithm using $O(\sqrt{n} \cdot k \cdot \varepsilon^{-3})$ space

Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- Streaming algorithms for *support-aware* error cannot achieve multiplicative error guarantees (reduction from Set Disjointness)
- One pass algorithm using $O(\sqrt{n} \cdot k \cdot \varepsilon^{-3})$ space
 - Complementary lower bound that $\Omega(\sqrt{n})$ space is required in one pass even for $k=2$

Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- Streaming algorithms for *support-aware* error cannot achieve multiplicative error guarantees (reduction from Set Disjointness)
- One pass algorithm using $O(\sqrt{n} \cdot k \cdot \varepsilon^{-3})$ space
 - Complementary lower bound that $\Omega(\sqrt{n})$ space is required in one pass even for $k=2$
- Two pass algorithm using $O(\log^2(n) \cdot k \cdot \varepsilon^{-3})$ space (exponential gap!)

Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- Streaming algorithms for *support-aware* error cannot achieve multiplicative error guarantees (reduction from Set Disjointness)
- One pass algorithm using $O(\sqrt{n} \cdot k \cdot \varepsilon^{-3})$ space
 - Complementary lower bound that $\Omega(\sqrt{n})$ space is required in one pass even for $k=2$
- Two pass algorithm using $O(\log^2(n) \cdot k \cdot \varepsilon^{-3})$ space (exponential gap!)
- Experiments on four datasets using our algorithms to find structure in real data

Streaming Support-Aware Histograms

$$\text{err}(f, P) < \min_{f^* \in H(k)} \text{err}(f^*, P) + \varepsilon$$

- Streaming algorithms for *support-aware* error cannot achieve multiplicative error guarantees (reduction from Set Disjointness)
- One pass algorithm using $O(\sqrt{n}) \cdot 1$
 - Complexity: $O(\sqrt{n})$ time and $O(\sqrt{n})$ space is required in one pass
- Two pass algorithm using $O(\log^2(n) \cdot k \cdot \varepsilon^{-3})$ space (exponential gap!)
- Experiments on four datasets using our algorithms to find structure in real data

Check out our paper and poster!