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o Let H(k) be the set of all k-piece histograms over [n]
o Goal: Using small space, find a f € H(K) s.t.
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Choosing an error function

err(f, P) < min,, - HOO err(f*, P) + ¢

o L1 error over the domain: err(f, P) = Zi & [n] |£(1) - P(3)|

o Measures error across all domain elements, regardless of whether
approximating those elements is important for downstream applications

o Simple, sparse distributions cannot be approximated well by histograms
under this notion of error

o Li error over the support: err(f, P) = Zi esupp(P)lf(i) = P(i)|

o “Support-aware” error is a natural definition that captures simple
structure in sparse data
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