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Partitional Clustering and k-means

Data: n unlabeled observations. X = {x1, . . . , xn} ⊂ Rp.

Goal: Find optimal partition C = {C1, . . . ,Ck} into k mutually
exclusive and exhaustive groups.

Centroid-based clustering

Introduce cluster centroids, Θ = {θ1, . . . ,θk} ⊂ Rp.

k-means

Assign each observation to the cluster represented by the nearest center,
minimizing within-cluster variance:

min
C

k∑
j=1

∑
x i∈Cj

d(x i ,θj)

Here d(·, ·) is a dissimilarity measure on Rp.
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Lloyd’s algorithm

Classically, d(x , y) = ∥x − y∥22.
Greedy approach: seeks local minimizer of k-means objective, rewritten

n∑
i=1

min
1≤j≤k

∥x i − θj∥2 := f−∞(θ)

1 Update label assignments: C
(m)
j = {x i : θ

(m)
j is closest center}

2 Recompute centers by averaging: θ
(m+1)
j =

1

|C (m)
j |

∑
x i∈C

(m)
j

x i

Simple yet effective, remains most widely used clustering algorithm.
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Bregman Hard Clustering

Bregman divergence: dϕ(x , y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x − y⟩.
ϕ(·) is convex, differentiable.
Bregman hard clustering objective:

min
Θ

n∑
i=1

min
1≤j≤k

dϕ(x i ,θj).

Mean as Minimizer

Let d : Rp × Rp → R≥0 to be any continuous function with continuous
first-order partial derivatives obeying d(x , x) = 0. Then the mean E[X ]
serves as the unique minimizer of E[d(X , y)] for y ∈ Rp if and only if
there exists some ϕ such that d = dϕ.
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Connection to Exponential Family

The squared ℓ2 distance is efficient if the clusters are normally
distributed.

Data generated from exponential family,

p(y |θ, τ) = C1(y , τ) exp

{
yθ − ϕ∗(θ)

C2(τ)

}
.

The negative log-likelihood of y can be written as its Bregman
divergence to the mean:

− ln p(y |θ, τ) = dϕ
(
y , g−1(θ)

)
+ C (y , τ).

In the context of clustering, they allow us to understand the analog of
k-means minimizing the within-cluster variance in terms of the
Bregman divergence based loss function.
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Drawbacks of Lloyd’s Algorithm

Too many local minimas!

Sensitive to initialization, gets trapped in poor solutions, worsens in
high dimensions.

Objective is non-smooth, highly non-convex.

Number of local minimas increase as the number of clusters (k)
increases.
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Power k-means with Bregman Divergence

The Proposed Objective function

fs(Θ) =
n∑

i=1

Ms(dϕ(x i ,θ1), . . . , dϕ(x i ,θk)). (1)

Here, Ms(y) =
(

1
k

∑k
i=1 y

s
i

)1/s

Note that,

fs(Θ) ↓ f−∞(Θ) = min
Θ

n∑
i=1

min
1≤j≤k

dϕ(x i ,θj)

We implement a majorization-minimization (MM) to minimize the
objective (1).

The proposal runs with the same time complexity as Lloyd’s k-means.

As we take s → −∞, we get solutions to the Bregman hard clustering
problem.
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Theoretical Properties

Model: X 1, . . . ,X n
i.i.d.∼ P.

(Informal) Theorem 3.7

Assume that,

∥X∥2 and ϕ(X ) are sub-exponential.

ϕ is τ1 strongly convex and ∇ϕ is τ2-Lipschitz.

Then whenever n ≥ log(2/δ) ≥ 1
2 , with probability at least 1− δ − e−cn,

Excess risk of Θ̂n ≲ (ξP + ∥Θ∗∥F )
k3/2−1/sp√

n

+ k1−1/s(1 + ξP + ∥Θ∗∥F )
√

2 log(2/δ)

n
.
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Significance of the Theoretical Analysis
Unlike Paul et al. (2021, NeurIPS) we relax the bounded support
assumption of P.

The bound on the excess risk is in terms of the size of Θ∗.

Matches with existing literature.

We can recover strong consistency guarantees and
√
n-consistency of

Θ̂n.

0 20 40 60 80 100
Data Points Per Cluster (n)

0.0

0.5

1.0

1.5

2.0

2.5

d
(

,
)

Divergence Between Estimated and True Clusters

Figure: We see that the empirical convergence of Bregman power k-means to the
true cluster centroids agrees with the OP(n

−1/2) convergence proposed in
Theorem 3.8.
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Experimental Results

Lloyd’s Bregman
Hard

Power Bregman
Power

Gaussian 0.828
(0.012)

0.837
(0.012)

0.927
(0.003)

0.927
(0.003)

Binomial 0.730
(0.014)

0.886
(0.011)

0.915
(0.004)

0.931
(0.003)

Poisson 0.723
(0.014)

0.882
(0.010)

0.888
(0.006)

0.916
(0.004)

Gamma 0.484
(0.009)

0.868
(0.005)

0.677
(0.008)

0.879
(0.004)

Table: Results for experiment 1. Mean and (standard deviation) ARI of Lloyd’s
algorithm, Bregman hard clustering, and their power means counterparts.
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Experiment 2
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Figure: Performance as Gamma shape parameter varies.
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Thank You!

https://arxiv.org/abs/2012.10929
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