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Partitional Clustering and k-means

e Data: n unlabeled observations. X = {x1,...,x,} C RP.
e Goal: Find optimal partition C = {Cy,..., Cc} into k mutually
exclusive and exhaustive groups.
Centroid-based clustering
Introduce cluster centroids, @ = {01, ...,0,} C RP.

k-means

Assign each observation to the cluster represented by the nearest center,
minimizing within-cluster variance:

k

mCin Z Z d(x;,8))
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Here d(-,-) is a dissimilarity measure on RP.
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Lloyd’s algorithm

o Classically, d(x,y) = ||x — y||3.
Greedy approach: seeks local minimizer of k-means objective, rewritten

n

. 2.
> i i = 6 i= (0

@ Update label assignments: C ={x;:0 -m is closest center}
(m+1
@ Recompute centers by averaging: 0 ’ (m)| Z X;
Xj GC

Simple yet effective, remains most widely used clustering algorithm.
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Bregman Hard Clustering

o Bregman divergence: dy(x,y) = ¢(x) — ¢(y) — (Vé(y),x — y).
e ¢(-) is convex, differentiable.

@ Bregman hard clustering objective:
n
i in dy(x;,0;).
m@lnzlglgk (i, 0})
1=

Mean as Minimizer

Let d : RP x RP — R> to be any continuous function with continuous
first-order partial derivatives obeying d(x,x) = 0. Then the mean E[X]
serves as the unique minimizer of E[d(X,y)] for y € RP if and only if
there exists some ¢ such that d = dj.
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Connection to Exponential Family

@ The squared ¢, distance is efficient if the clusters are normally
distributed.

@ Data generated from exponential family,

p(y|0,7) = Gi(y, 7)exp {W} .

@ The negative log-likelihood of y can be written as its Bregman
divergence to the mean:

—Inp(yl0,7) = dy (v,g71(8)) + Cly, 7).

@ In the context of clustering, they allow us to understand the analog of
k-means minimizing the within-cluster variance in terms of the
Bregman divergence based loss function.
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Drawbacks of Lloyd's Algorithm

Too many local minimas!
@ Sensitive to initialization, gets trapped in poor solutions, worsens in
high dimensions.
@ Objective is non-smooth, highly non-convex.
@ Number of local minimas increase as the number of clusters (k)
increases. )
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Power k-means with Bregman Divergence
The Proposed Objective function

©) = Mu(dy(xi,01), ..., dy(xi, 0x)). (1)
i=1

Here, Ma(y) = (1324 57) "

Note that,

(0)] (@) = mlnzlmln dg(xi, 6))

<j<k

e We implement a majorization-minimization (MM) to minimize the
objective (1).
@ The proposal runs with the same time complexity as Lloyd's k-means.

@ As we take s — —o0, we get solutions to the Bregman hard clustering
problem.
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Theoretical Properties

o Model: X1,...,X, "~ P,
(Informal) Theorem 3.7
Assume that,
@ || X]|]2 and ¢(X) are sub-exponential.
@ ¢ is 7 strongly convex and V¢ is m-Lipschitz.
Then whenever n > log(2/5) > 3, with probability at least 1 — § — =",

- k3/2—1/sp
Excess risk of @, < (¢p + H@*HF)T
2log(2/d
PR 6 104 )y 2B,
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Significance of the Theoretical Analysis
@ Unlike Paul et al. (2021, NeurlPS) we relax the bounded support
assumption of P.
@ The bound on the excess risk is in terms of the size of ©,.
o Matches with existing literature.
@ We can recover strong consistency guarantees and \/n-consistency of
Q,.

Divergence Between and True Clusters

o 100

a0 60
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Figure: We see that the empirical convergence of Bregman power k-means to the
true cluster centroids agrees with the Op(n_1/2) convergence proposed in
Theorem 3.8.
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Experimental Results

Lloyd’s | Bregman | Power | Bregman
Hard Power
Gaussian | 0.828 0.837 0.927 0.927
(0.012) | (0.012) (0.003) | (0.003)
Binomial | 0.730 0.886 0.915 0.931
(0.014) | (0.011) (0.004) | (0.003)
Poisson 0.723 0.882 0.888 0.916
(0.014) | (0.010) (0.006) | (0.004)
Gamma 0.484 0.868 0.677 0.879
(0.009) | (0.005) (0.008) | (0.004)

Table: Results for experiment 1. Mean and (standard deviation) ARI of Lloyd's
algorithm, Bregman hard clustering, and their power means counterparts.
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Experiment 2

Clustering ARIs vs. Gamma Shape Parameter (a)
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Figure: Performance as Gamma shape parameter varies.
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Thank Youl

https://arxiv.org/abs/2012.10929
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