Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(\epsilon^{-7/4})$ Complexity

Huan Li Nankai University

Zhouchen Lin Peking University

Non-convex Optimization

- Problem: $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ $f(\mathbf{x})$: non-convex function
- Applications: Matrix completion, matrix factorization, robust PCA, phase retrieval, deep learning
- Demand: Fast first-order solvers for high dimensional problems in machine learning

Accelerated Gradient Descent (AGD)

- Gradient descent (GD), a fundamental algorithm in machine learning
- GD is not optimal for convex problems. AGD is faster and optimal.
- Question: Can we design AGD for non-convex problems faster than GD?
- Assumptions:
 - Lipschitz gradient: $\|\nabla f(\mathbf{y}) \nabla f(\mathbf{x})\| \le L\|\mathbf{y} \mathbf{x}\|$
 - Lipschitz Hessian: $\|\nabla^2 f(\mathbf{y}) \nabla^2 f(\mathbf{x})\|_2 \le \rho \|\mathbf{y} \mathbf{x}\|$

Previous Work

- Carmon et al. (2018) and Agarwal et al. (2017) proved the $O\left(\frac{\text{polylog}d}{\epsilon^{7/4}}\log\frac{1}{\epsilon}\right)$ rate to find second-order stationary point with high probability
 - ϵ -second-order stationary point: $\|\nabla f(\mathbf{x})\| \le \epsilon$, $\lambda_{min}(\nabla^2 f(\mathbf{x})) \succeq -\sqrt{\epsilon\rho}$
 - Solve sequence of regularized subproblems using convex AGD
- Carmon et al. (2017) proved the $O\left(\frac{L^{1/2}\rho^{1/4}\triangle_f}{\epsilon^{7/4}}\log\frac{1}{\epsilon}\right)$ rate to find first-order stationary point
 - Also solve sequence of regularized subproblems using convex AGD
- Jin et al. (2018) proposed the first single-loop AGD with the $O\left(\frac{\text{polylog}d}{\epsilon^{7/4}}\log\frac{1}{\epsilon}\right)$ rate to find second-order stationary point with high probability
 - Use negative curvature exploitation (NCE) when the function is too non-convex

Question

- Can we design much simpler AGD?
 - Without NCE and sequence of regularized subproblems to solve
- If possible, can we prove faster rate?
 - For example, remove the $O\left(\log\frac{1}{\epsilon}\right)$ factor

Our Method: Restarted AGD

- Two distinguishing features:
 - Restart
 - Specific average
- Simple algorithm structures
 - No NEC, no subproblems to solve
- Faster rate to find first-order stationary point

$$\begin{array}{cc} \bullet & O\left(\frac{L^{1/2}\rho^{1/4}\triangle_f}{\epsilon^{7/4}}\right) \text{ v.s. } O\left(\frac{L^{1/2}\rho^{1/4}\triangle_f}{\epsilon^{7/4}}\log\frac{1}{\epsilon}\right) \\ & \text{Ours} & \text{SOTA} \end{array}$$

• No more $O\left(\log \frac{1}{\epsilon}\right)$ factor

Algorithm 1 Restarted AGD

Initialize
$$\mathbf{x}^{-1} = \mathbf{x}^0 = \mathbf{x}_{int}, k = 0.$$

while $k < K$ do

 $\mathbf{y}^k = \mathbf{x}^k + (1 - \theta)(\mathbf{x}^k - \mathbf{x}^{k-1})$
 $\mathbf{x}^{k+1} = \mathbf{y}^k - \eta \nabla f(\mathbf{y}^k)$
 $k = k + 1$

if $k \sum_{t=0}^{k-1} ||\mathbf{x}^{t+1} - \mathbf{x}^t||^2 > B^2$ then

 $\mathbf{x}^{-1} = \mathbf{x}^0 = \mathbf{x}^k, k = 0$

end if

end while

$$K_0 = \operatorname{argmin}_{\lfloor \frac{K}{2} \rfloor \le k \le K-1} \|\mathbf{x}^{k+1} - \mathbf{x}^k\|$$
Output $\hat{\mathbf{y}} = \frac{1}{K_0+1} \sum_{k=0}^{K_0} \mathbf{y}^k$

Extension to Second-order Stationary point

Add perturbations when restart

$$\mathbf{x}^{-1} = \mathbf{x}^{0} = \mathbf{x}^{k} + \xi 1_{\|\nabla f(\mathbf{y}^{k-1})\| \leq \frac{B}{\eta}}, k = 0,$$

 $\xi \sim \text{Unif}(\mathbb{B}_{0}(r))$

- Need $O\left(\frac{L^{1/2}\rho^{1/4}\triangle_f}{\epsilon^{7/4}}\log^6\frac{d}{\zeta\epsilon}\right)$ iterations to find ϵ -second-order stationary point with probability at least $1-\zeta$
 - The same with the rate in (Jin et al. 2018)

Proof Sketch

• One epoch:

Iterations from k=0 to $\mathcal{K}=\min_{k}\left\{k\left|k\sum_{t=0}^{k-1}\|\mathbf{x}^{t+1}-\mathbf{x}^{t}\|^{2}>B^{2}\right\}$ until the if condition triggers

• Approximate f(x) by its quadratic Talor expansion at each epoch

epoch 1 epoch 2 epoch 3 the last epoch

- Less than $K = O(\epsilon^{-1/4})$ iterations at each epoch
- Descent: $f(\mathbf{x}^{\mathcal{K}}) f(\mathbf{x}^0) \le -O(\epsilon^{1.5})$
- Terminate in at most $O(\epsilon^{-1.5})$ epochs
- Total iterations: $O(\epsilon^{-1.5} \times \epsilon^{-1/4}) = O(\epsilon^{-7/4})$

• Equal to K iterations

Find the specific average ŷ
in this epoch with small
gradient:

$$\|\nabla f(\hat{\mathbf{y}})\| \le \epsilon$$

