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Cross-session neural variability

Neural population activity is hypothesised to be inherently low-dimensional and

stable over recording sessions.

However, gradual changes to recorded neurons over time due to turnover and

electrode movement leads to instability.
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Data: Recordings from M1 during reach task
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Model: SABLE - learns variability between sessions.
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Results: Behaviour decoding accuracy on unseen sessions
e==|FADS «=RNN «==SABLE «==SABLE-NOREV === RAVE+

Intermediate Test Session End Test Session

Monkey 1

0.20

Mean R-squared
© © ©9 © © o ©
ok N w B n [2] ~
o o o o o o o

Mean R-squared
1S3 o o o
- w D [4)]

o o o o

2 4 8 12 2 4 8 12
Number of Training Sessions Number of Training Sessions

ean R-squared
o o o o o
> 0 o N ®
o o o o o
Mean R-squared
o o o o o
w i o o ~

o©
)

Monkey 2 g

o o
N W
o O
[« ]

=

N

3 4
Number of Training Sessions Number of Training Sessions

(o]
N
w
N
(&)




Results: T-SNE plots of latent spaces
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Results: SABLE behaviour reconstruction
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Summary

Approach: Sequential variational autoencoder combined with unsupervised
domain adaptation.

Trained on several recording sessions this model can achieve state-of-the-art
generalization when predicting behaviour on unseen sessions of recording.

Negative gradient leads to the encoder maximising the reconstruction loss,
encouraged to generate latent variables which are not separated by session.

Simultaneously, behaviour decoder forces the encoder to generate latent
variables which are differentiated by behaviour.



