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GRASCale

• Existing works use smoothness of the signals to perform clustering.

• Clustering can benefit from pairwise relations between signals.

Clusters 's

minimize

tr(Z⊤LcZ)︸ ︷︷ ︸
Graph Cut

+ α1

k∑
s=1

tr(dg(Z·s)X⊤LsX)︸ ︷︷ ︸
Smoothness

+ (Z⊤·s 1)α2∥Ls∥2F

s. t. Z ∈ D

, Ls ∈ L, tr(Ls) = 2n ∀s ∈ {1, . . . , k}

(1)

• Solve with Block Coordinate Descent with prox-linear updates.
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