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Graph Signals
- 2 Nodes
Graphs are used to study relational data. — Edges

Graph Signal Processing aims to extend
ML/SP concepts to graph signals.

- Signal recovery, sampling, filtering...

- In many applications, graph structure is not readily available.

Given graph signals: Learn the graph:
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- Methods proposed for learning graphs based on:
- Statistical modeling, stationarity, smoothness... z; ~

- These works mostly assume that data is homogeneous.
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- Methods proposed for learning graphs based on:

- Statistical modeling, stationarity, smoothness...

- However, many problems include heterogeneous data.
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- Methods proposed for learning graphs based on:

- Statistical modeling, stationarity, smoothness...

- However, many problems include heterogeneous data.
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Graph Signals

- Applications:

- scRNAseq: Cluster cells while learning GRNs,
- Recommendation: Cluster users while learning item graphs.
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- Existing works use smoothness of the signals to perform clustering.
- Clustering can benefit from pairwise relations between signals.

Regularize Spectral Clustering

Spectral
Clustering

G¢ Clusters G*'s

minimize tr(Z7L°Z) +an Y _ tr(dg(Z.s)X LX) + (Z51)aa|L°|I
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Graph Cut Smoothness

s.st. ZeD, L°eL, tr(l®)=2nVse {1,...,k}

- Solve with Block Coordinate Descent with prox-linear updates.
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Conclusions

- We proposed GRASCale for simultaneous graph signal clustering and
graph learning.

- Compared to previous works, it extends spectral clustering algorithm
to use

- Pairwise relations between graph signals, and
- Smoothness of the signals with respect to graphs associated with clusters.



