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Neural Tangent Kernel

Consider a neural network (NN) f trained on dataset D by gradient flow:

W — _v.r ~ Y v 8ﬁ( )

(eD of (xi)

where w is the vector of all the trainable parameters and L is the loss
function.

2/8



Neural Tangent Kernel

Consider a neural network (NN) f trained on dataset D by gradient flow:

W — _v.r ~ Y v 8ﬁ( )

(eD of (xi)

where w is the vector of all the trainable parameters and L is the loss
function. Then the dynamics of f is given by:

: : 0L(D)
() (x) = 3wl = - .
fY(x) = Vwf(x) - -w E O(x, x;) 9 ()
(xi,y:)€D

Definition: Neural tangent kernel (NTK) of a NN with output function
f(-) and trainable parameters w is given by

O(xi,%) == Vuwf (x) Vuf(x), xi.x € X.

~> The NTK captures the first-order approximation of NN's training!
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Neural Tangent Kernel

Assume a NN f : R™ — R has depth L and layer widths ng, ..., n;.

In the infinite-width limit np — 00,1 < £ < L [Jacot et al., 2018]:

NTK is deterministic under random initialization:

00 (x;,7) = Ew[0@(xi, )] = O (. ),
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Neural Tangent Kernel

Assume a NN f : R™ — R has depth L and layer widths ng, ..., n;.

In the infinite-width limit np — 00,1 < £ < L [Jacot et al., 2018]:

NTK is deterministic under random initialization:

00 (x;,7) = Ew[0@(xi, )] = O (. ),

NTK stays constant during training:
0 (x;, x;) — O (x. ).

Thus, NNs dynamics is governed by a constant deterministic kernel in the
infinite-width limit.

~ Infinitely-wide NNs evolve as linear models with NTK kernel!
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Can we rely on the infinite-width limit?

Infinite-width NTK is /abel-agnostic and does not learn features.
= cannot provide optimal representation system for a task.
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Can we rely on the infinite-width limit?

Infinite-width NTK is /abel-agnostic and does not learn features.
= cannot provide optimal representation system for a task.

In the NTK limit, the depth-to-width ratio tends to zero:
L
L-fixed, n 5 00= — =0, 1</<L-1
n
=> this limit only models shallow networks.

Infinite-width approximations often get worse as the depth increases
[Li et al., 2021, Hanin and Nica, 2020, Hu and Huang, 2021].

Empirical performance of the NTK and finite NNs differs
[Fort et al., 2020, Lee et al., 2020].

~» It is not clear when the NTK regime explains NNs’ behavior!
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Our setting

We study the NTK of fully-connected ReLU NNs with:

L
Comparable depth and width: - = >0 1</<L[-1
i
2
Initialization given by: ij- ~ ,/\/(0, l» bf =0.
ne—1
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Our setting

We study the NTK of fully-connected ReLU NNs with:

L
Comparable depth and width: - = >0 1</<L[-1
i
2

Initialization given by: ij- ~ N(O, h), bt = 0.
ne—1
Phase transition at initialization [Poole et al., 2016]:
Chaotic phase: If a2, > 2, gradients norm increases with depth.

Ordered phase: If 02, < 2, gradients norm decreases.

Edge of chaos~ (EOC): 02, a 2 allows deeper signal propagation.
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Our setting

We study the NTK of fully-connected ReLU NNs with:

L
Comparable depth and width: - = >0 1</<L[-1
i

2
o2
Initialization given by: ij- ~ N(O, i), bt = 0.
ne—1
Phase transition at initialization [Poole et al., 2016]:
Chaotic phase: If a2, > 2, gradients norm increases with depth.
Ordered phase: If 02, < 2, gradients norm decreases.

Edge of chaos~ (EOC): 02, a 2 allows deeper signal propagation.

Related work:

[Hanin and Nica, 2020] showed that the NTK of ReLU NNs with A > 0 is
random and dynamic for o2, = 2 (EOC).

[Xiao et al., 2020, Hayou et al., 2019] studied the effects of the phase
transition on the infinite-width NTK.
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Contributions

> Show that properties of the NTK depend
significantly on depth-to-width ratio A and
initialization variance o2,.

o=
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Contributions
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> Show that properties of the NTK depend
significantly on depth-to-width ratio A and
initialization variance o2,.

deep

» Namely, the NTK regime can approximate
only wide and shallow Rel.U networks
(A = 0) or deep networks (A > 0) in the
ordered phase.
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= Characterize the NTK variability in the infinite-depth-and-width limit in all
three phases, as well as finite-width approximations.
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Contributions

Show that properties of the NTK depend
significantly on ratio A and
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Contributions

Show that properties of the NTK depend
significantly on ratio A and
variance o2

Namely, the NTK regime can approximate
only wide and

(A= 0)or (A > 0) in the
ordered phase.

NS

deep

shallow

NTK
regime

Random
and dynamic
NTK

ordered 62 =2 chaotic 62
Characterize the NTK variability in the limit in all
three phases, as well as approximations.
Study the first gradient descent step of the NTK in the
infinite-depth-and-width limit.
Discuss and its training dynamics outside of

the NTK regime.
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Variability of the NTK at initialization

Theorem (Seleznova & Kutyniok, 2022)
For NNs of constant width M the following holds for the NTK dispersion:
@ /n the chaotic phase the NTK dispersion grows exponentially with \:

E[@z(X, X)] ie5>\ (1 _ i = e_4’\)>.

E?[O(x, x)] 2\ 4)\(1

@® At the EOC the NTK dispersion grows exponentially with a slower rate:

E[©2(x, x)] 1 1 . 1 L
E2[0(x,x)]  (1+a0)? lﬁ (- a-e™) +g(%ao>]~
E[©2%(x, x)]

Ez[@(X, X)] M—o0,L— 0,
L/M—XER

1.

© In the ordered phase the variance is zero:
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Variability of the NTK at initialization

The 3 F2!
o a) M =100

b) M =200

c) M =500

—— Ordered
— EOC
—— Chaotic

Experiments:
—-=- 0,=08
- 2y

Figure: E[©%(x, x)]/E?[©(x, x)] ratio for constant-width ReLU NNs.

~ We can estimate the dispersion of a given NN!
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More results in the paper:
Finite-width approximations of the NTK moments
Changes of the NTK in the first GD step

Bound on the dispersion of non-diagonal NTK elements

Thank you for your attention!
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