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Neural Tangent Kernel

Consider a neural network (NN) f trained on dataset D by gradient flow:

ẇ(t) = −∇wL(D) = −
∑

(xi ,yi )∈D

∇wf (xi )
∂L(D)

∂f (xi )
,

where w is the vector of all the trainable parameters and L is the loss
function.

Then the dynamics of f is given by:

ḟ (t)(x) = ∇wf (xi ) · ẇ(t) = −
∑

(xi ,yi )∈D

Θ(x , xi )
∂L(D)

∂f (xi )

Definition: Neural tangent kernel (NTK) of a NN with output function
f (·) and trainable parameters w is given by

Θ(xi , xj) := ∇wf (xi )
T∇wf (xj), xi , xj ∈ X .

; The NTK captures the first-order approximation of NN’s training!
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Neural Tangent Kernel

Assume a NN f : Rn0 → RnL has depth L and layer widths n0, . . . , nL.

In the infinite-width limit nℓ → ∞, 1 ≤ ℓ < L [Jacot et al., 2018]:

▶ NTK is deterministic under random initialization:

Θ(0)(xi , xj) → Ew[Θ
(0)(xi , xj)] = Θ∗(xi , xj),

▶ NTK stays constant during training:

Θ(t)(xi , xj) → Θ∗(xi , xj).

Thus, NNs dynamics is governed by a constant deterministic kernel in the
infinite-width limit.

; Infinitely-wide NNs evolve as linear models with NTK kernel!
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Can we rely on the infinite-width limit?

▶ Infinite-width NTK is label-agnostic and does not learn features.
⇒ cannot provide optimal representation system for a task.

▶ In the NTK limit, the depth-to-width ratio tends to zero:

L– fixed, nℓ → ∞ ⇒ L

nℓ
→ 0, 1 ≤ ℓ ≤ L− 1

⇒ this limit only models shallow networks.

▶ Infinite-width approximations often get worse as the depth increases
[Li et al., 2021, Hanin and Nica, 2020, Hu and Huang, 2021].

▶ Empirical performance of the NTK and finite NNs differs
[Fort et al., 2020, Lee et al., 2020].

; It is not clear when the NTK regime explains NNs’ behavior!
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Our setting

We study the NTK of fully-connected ReLU NNs with:

▶ Comparable depth and width:
L

nℓ
=: λℓ > 0, 1 ≤ ℓ ≤ L− 1.

▶ Initialization given by: Wℓ
ij ∼ N

(
0,

σ2
w

nℓ−1

)
, bℓi = 0.

Phase transition at initialization [Poole et al., 2016]:

▶ Chaotic phase: If σ2
w > 2, gradients norm increases with depth.

▶ Ordered phase: If σ2
w < 2, gradients norm decreases.

▶ ≪Edge of chaos≫ (EOC): σ2
w ≈ 2 allows deeper signal propagation.

Related work:

▶ [Hanin and Nica, 2020] showed that the NTK of ReLU NNs with λ > 0 is
random and dynamic for σ2

w = 2 (EOC).

▶ [Xiao et al., 2020, Hayou et al., 2019] studied the effects of the phase
transition on the infinite-width NTK.
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Contributions

▶ Show that properties of the NTK depend
significantly on depth-to-width ratio λ and
initialization variance σ2

w .

λ

σ2
wσ2

w = 2

Random  
and dynamic 

NTK

NTK 

regime

ordered chaotic

sh
al
lo
w

de
ep

▶ Namely, the NTK regime can approximate
only wide and shallow ReLU networks
(λ ≈ 0) or deep networks (λ ≫ 0) in the
ordered phase.

▶ Characterize the NTK variability in the infinite-depth-and-width limit in all
three phases, as well as finite-width approximations.

▶ Study the first gradient descent step of the NTK in the
infinite-depth-and-width limit.

▶ Discuss structure of the NTK matrix and its training dynamics outside of
the NTK regime.
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Variability of the NTK at initialization

Theorem (Seleznova & Kutyniok, 2022)

For NNs of constant width M the following holds for the NTK dispersion:

1 In the chaotic phase the NTK dispersion grows exponentially with λ:

E[Θ2(x , x)]

E2[Θ(x , x)]
−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
.

2 At the EOC the NTK dispersion grows exponentially with a slower rate:

E[Θ2(x , x)]

E2[Θ(x , x)]
→ 1

(1 + α0)2

[
1

2λ
e5λ
(
1− 1

4λ
(1− e−4λ)

)
+ g(λ, α0)

]
.

3 In the ordered phase the variance is zero:
E[Θ2(x , x)]

E2[Θ(x , x)]
−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1.
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Variability of the NTK at initialization
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Figure: E[Θ2(x , x)]/E2[Θ(x , x)] ratio for constant-width ReLU NNs.

; We can estimate the dispersion of a given NN!
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More results in the paper:

▶ Finite-width approximations of the NTK moments

▶ Changes of the NTK in the first GD step

▶ Bound on the dispersion of non-diagonal NTK elements

▶ ...

Thank you for your attention!
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