

ROCK: Causal Inference Principles for Reasoning about Commonsense Causality

Jiayao Zhang* Hongming Zhang*† Weijie J. Su*

Dan Roth*‡

*University of Pennsylvania [†]Tencent AI Lab, US [‡]AWS AI Labs

Commonsense Causality Reasoning (CCR)

Given two events (described in natural languages), reasoning about their cause-and-effect relationships in a way that corresponds to an average person's judgement.

Concrete Problems

- Estimation/Inference: does E₁ cause E₂?
- Generation/Explanation: what causes E₁?

Desiderata

- Commonsense: aligns with human's commonsense
- Zero-shot: use only pre-trained language models

Challenges

- How to account for confounders (confounding co-occurrences)?
- How to adopt formal causal inference models?

Q: Does E_1 cause E_2 ?

WHAT IS BEING DONE IN OBSERVATIONAL STUDIES?

Example: E_1 : Alice entered a restaurant. E_2 : Alice ordered a pizza.

First Goal: Define study units, treatments, potential outcomes, and the estimand.

Unit	Covariates				Treatment T	Observed	
	X _{i, 1}	X _{i, 2}	X _{i, 3}		ireatifient /	Outcome Y	
1	1	0	1		1	1	
2	0	0	1		0	0	
3	0	1	0		0	1	

Definitions

Study Unit: Alices (i.e., humans)

Covariates $X_{i,j}$: Occurrence of the *j*th **context**

to the ith unit

Treatment T_i : Occurrence of E_1 (to the *i*th unit)

Outcome Y_i : Occurrence of E_2 (to the *i*th unit)

The Causal Estimand (Average Treatment Effect)

$$\Delta = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= \mathbb{E}_{x}[\mathbb{E}[Y(1) \mid X, T] - \mathbb{E}[Y(0) \mid X, T]] \quad \text{(ignorability)}$$

$$= \mathbb{E}[\mathbf{1}\{\mathsf{E}_1 < \mathsf{E}_2\}] - \mathbb{E}[\mathbf{1}\{\neg \mathsf{E}_1 < \mathsf{E}_2\}] \qquad \text{(notation)}$$

$$= \mathbb{P}(\mathsf{E}_{1} \leq \mathsf{E}_{2}) - \mathbb{P}(\neg \mathsf{E}_{1} \leq \mathsf{E}_{2})$$

 $Y_i(T)$: the potential outcome of the *i*th unit corresponds to the treatment T

The ROCK Framework

- 1. Sample a set of events X_i (contexts) that occur before E_1 .
- 2. Generate a set of interventions A_i based on E_1 .
- 3. Select the comparable interventions by matching on temporal propensities.
- 4. Estimate the causal estimand Δ and report the result.

Evaluation

- Datasets: Choice of Plausible Alternatives (COPA), and GLUCOSE.
- \circ Method: compute the estimand Δ for two choices, choose the choice with a higher Δ .
- Example:

```
Example B.1 (Did E_1 cause E_2^{(1)} or E_2^{(2)}?). E_1: \text{ The teacher assigned homework to the students.} E_2^{(1)}: \text{ The students passed notes.} E_2^{(2)}: \text{ The students groaned.}
```

Ablations

- Pre-trained LM vs. a fine-tuned LM (on NYT) for temporality predictor.
- On covariate set size.
- On various normalization choices (e.g., how to normalize the temporal probabilities).

Performance (accuracy) on COPA and GLUCOSE

	Random Baseline	$\hat{\Delta}_1 \uparrow L_1$ -Balanced	$\hat{\Delta}_2 \uparrow \ L_2 ext{-Balanced}$	$\hat{\Delta}_{E_1} \uparrow$ Temporal	$\hat{\Delta}_{\mathcal{A}}\uparrow$ Unbalanced	$\hat{\Delta}_{\mathcal{X}}\uparrow$ Misspecified
COPA-DEV	0.5 ± 0.050	0.6900	0.7000	0.5800	0.5600	0.5300
COPA-TEST	0.5 ± 0.022	0.5640	0.5640	0.5200	0.5400	0.5240
GLUCOSE-D1	0.5 ± 0.040	0.6645	0.6968	0.5677	0.5742	0.6581
COPA-DEV (-T)	0.5 ± 0.050	0.6200	0.6300	0.5300	0.4800	0.5300
COPA-TEST (-T)	0.5 ± 0.022	0.5800	0.5740	0.4540	0.4600	0.4860
GLUCOSE-D1 (-T)	0.5 ± 0.040	0.6065	0.6194	0.5548	0.4387	0.3742

proposed (using ROCK)

unadjusted baselines

- Adjusted scores Δ_p are better than unadjusted scores (the last three columns).
- On COPA-Dev, the performance is similar to self-talk while being truly zero-shot.
- When computing temporal propensities (Step 3), a fine-tuned LM (first three rows) outperforms its pre-trained counterpart (last three rows).

Summary

- Adopt the potential-outcomes framework for the CCR task: find comparable interventions.
- Propose a modular framework, ROCK, to estimate the temporality-motivated causal estimand by temporal propensity matching.
- Empirical studies and ablation studies demonstrate ROCK's effectiveness in zero-shot CCR.

Future Work

- Implicit events
- Explanation generation

