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Q-Learning

Core RL algorithm
Based on controlling the projected Bellman error
Practically successful even in large applications
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Q-Learning with function approximation uses
experience replay, target networks
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Reinforcement Learning Exploration
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Q-Learning with Linear Function Approximation

Parametric
Approximation O, (s,a) = ¢(S, a)' w
/Learnlng rate
Update W= a[ ] VQw(S, CZ)
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Current parameter TD error Gradient of Q-function

Issue: not a stochastic gradient update

1. ‘Gradient’ is not really a gradient of any loss
2. Non-stationary (s, a, r, s') data distribution



Stabilizing Q-Learning with Linear Architectures

1) Exploration Bonus - 2) Target Network

Update wh=w— al0,(s,a)=r—y max Qi(s’, a)]V Q,(s, a)
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4) Learning Rate S ,
3) Replay Mechanlsm



Target Network

Target Network
Ensures Q-Learning “(w) = Z [Q.(s,a)—r —y max Q' (s", a")]*
Minimizes a Loss .
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Policy Replay for Experience Replay
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Experience replay Sy, g Ty 55)
essential for state-of-the-art empirical RL L
(e.g., Mnih et al., 2015)
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Policy replay ) 22"
same effect but limited memory



Main Result

Q-Learning with Linear Function Approximation is provably efficient
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Thank you for your Attention!



