
Andrea Zanette, Martin J. Wainwright

Stabilizing Q-Learning with  
Linear Architectures for  
Provable Efficient Learning



Q-Learning
Core RL algorithm

Based on controlling the projected Bellman error

Practically successful even in large applications 


Kiran et al, 2020Mnih et al, 2015

Q-Learning with function approximation uses 
experience replay, target networks



Reinforcement Learning Exploration

Setting

Mistake in episode k

Goal:  
Minimize Cumulative Regret

Optimal return Agent’s return

Regret =
K

∑
k=1

V⋆ − Vπk



Q-Learning with Linear Function Approximation

Update

Parametric  
Approximation Qw(s, a) = ϕ(s, a)⊤w

Issue: not a stochastic gradient update

Current parameter Gradient of Q-function

Learning rate

1. `Gradient’ is not really a gradient of any loss

2. Non-stationary  data distribution(s, a, r, s′￼)

w+ = w − α[Qw(s, a) − r − γ max
a′￼

Qw(s′￼, a′￼)]∇Qw(s, a)

TD error



Stabilizing Q-Learning with Linear Architectures

Update w+ = w− α[Qw(s, a)−r−γ max
a′￼

Qtar
w (s′￼, a′￼)]∇Qw(s, a)

2) Target Network

3) Replay Mechanism
4) Learning Rate

1) Exploration Bonus



Target Network

Target Network 
Ensures Q-Learning  
Minimizes a Loss

ℒ(w) = ∑
s,a,r,s′￼

[Qw(s, a)−r − γ max
a′￼

Qtar
w (s′￼, a′￼)]2

Fixed Bellman backupQtar
w ← Qw

Periodic Updates 
(slower timescale)



Policy Replay for Experience Replay

Experience replay  
essential for state-of-the-art empirical RL  
(e.g., Mnih et al., 2015)

(s1, a1, r1, s′￼1)
(s2, a2, r2, s′￼2)

(sn, an, rn, s′￼n)

…

Policy replay 
same effect but limited memory

π1

πd

…



Main Result

Q-Learning with Linear Function Approximation is provably efficient

Total Memory Used                      Õ (d3H2)

Cumulative Regret                     Õ (H3d3/2 K)

Horizon Feature dimension

# Episodes

Per-Step Computations                Õ (d2A)
# Actions



Thank you for your Attention!


