A General Recipe for Likelihood-free Bayesian
Optimization
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Black-box Global Optimization
x Black-box - )

Suppose we have a noisy “black-box” function f. function f

Goal: estimate the location of global optima of f.
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Bayesian Optimization

From past observations:

e B . n
‘ Dy = {(%i, i) }ieq
Define the model as:

p(y[x,Dn)

Most popular one is Gaussian Process

~—/

[ Probabilistic model of f

[ Use model to choose queries L _
/ Construct acquisition function from model,

then find its maximum to query.

Xp1+1 = arg max a(x)




Acquisition Functions

Many acquisition functions are defined as
expected “utility” over the model:

Oé(X) — IE‘:“p(y|x;Dn) [U(y)]

Probability of improvement (PI):

Indicator of 1peing over some

U(y) — H(y > 7-) threshold T

Expected improvement (El)

How much is Upver some
threshold 7

u(y) = max(y — 7,0)

Expectations often have analytical form for Gaussian processes (GPs)




Drawbacks of BO with Gaussian Processes

4 . I
O(n”) O(n)
for basic GP for sparse GP
inference. inference.
Scalability
o 9%

Expressiveness

* In BO, query only depends on acquisition function!

 Can we do this without a separate probabilistic model?




Overview

Analytical
expected utility

A Classifier-
based Approach
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Bayesian Optimization via classification

Prior work has proposed using classifiers for Bayesian optimization:
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Problems with current approach

Once a point is over the threshold, it does not matter by how much
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Likelihood-free Bayesian Optimization

Solution: reweight the “positive” queries by its utility value.

» For El, this becomes  u(y) = max(y — 7,0)

 Higher observed value leads to higher weights.
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Likelihood-free Bayesian Optimization

Solution: reweight the “positive” queries by its utility value.

* In principle, works for any non-negative utility function!

-
Changes in “one line”:
loss = nn.BCEWithLogitsLoss(weight= ) (target, label)
PyTorch
model.fit(inputs, target, sample weight= )

Keras, scikit-learn, XGBoost

Theory: LFBO converges to desired acquisition function asymptotically




Experiments: Hyperparameter Tuning
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Experiments: Hyperparameter Tuning
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immediate regret

Experiments: Neural Architecture Search
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Experiments: Composite Functions

Vs

(a vector)

x mp Black-box =) » f(SU) _ —||Z . Z*Hg

function h

Objective to optimize for

(&

 Leveraging the structure can be helpful!
 With GPs, tractability becomes an issue.

e Easy to implement with LFBO

he(x): minimize distance to observed z

I

Leverage relationship
h@ between f and h — C(Qf)




Experiments: Composite Functions

[a—
<

—%-— Composite GP

10~ == Composite LFBO |
E H
)
£ 2
o 10
©
° 3
e 10
£
1()—4 i NG ]
| ——
10 20 40 60 80 100

# of queries

20



Summary

e Classifier models can be useful acquisition functions!

* To get the desired acquisition function, reweight according to utility.

LFBO (ours) All .n_on—negz.;\tive
utility functions
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Project website: https://Ifbo-ml.github.io/

Code release: https://github.com/Ifbo-ml/Ifbo

arXiv: https://arxiv.org/abs/2206.13035
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