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R
Motivation

@ We have minimax-optimal (up to logarithmic factors) linear bandit al-
gorithms [e.g. AyPS11].

@ However, all of the existing algorithms require solving the following prob-
lem:

a=argmaxf(0,x,),
acA

where A is a finite arm set with | A| = K, x; is the feature corresponding
to a. 0 is the linear coefficients and f is a function depends on 6 and x.

@ Typically, this can be solved via an enumeration over A, which leads to
a per-step time complexity of ©(K). However, it is not computationally
efficient when K is large.
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Contribution

@ Key question: Can we obtain o(K) per-step time complexity?

@ We provide an affirmative answer with a novel Maximum Inner Product
Search (MIPS) solver for adapted queries.

@ We propose an elimination based algorithm and a Thompson Sampling
based algorithm to achieve this target with complete characterization on
the regret.

@ We make discussions on the scenarios when we can achieve o(K) com-
plexity without sacrificing the regret.

Sublinear Time Linear Bandits ICML 2022 3/11



|
MIPS Solver for Adapted Queries

Definition ((c, r,e)-MIPS problem)

Let P C R? be a finite set of points with ||p|l2 < 1,Vp € P. Let q € R?
be the query with ||g||2 < 1. The (c, r, c)-approximated max inner product
search ((c, r,e)-MIPS) aims to find p € P such that (q,p) > cr — ¢ if
there exists p* € P with (g, p*) > r +¢.

Several high probability MIPS solvers with sublinear time complexity have
been proposed for non-adaptive queries (with some additional
pre-processing steps in K1T°(1) time). We can also adapt [ALRW17] to
provide a (c, r,0) MIPS solver that success with probability at least 0.9.
But we need to deal with multiple adaptive queries.
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MIPS Solver for Adapted Queries

Our construction to deal with the adapted queries:
@ Make an e-cover of ¢ ball whose size is ©(exp(d)) (here € corresponds
to the addictive error in the definition of (c, r,e)-MIPS problem).
o Initialize = ©(d) (c,r,0) non-adaptive MIPS solver (to boost the
success probability).
o For each query g, round g to the nearest point in the cover (denoted as
q), and return the results of any MIPS solver with query g.

iBmd MIPS Solvers S;, i € [k]
N

Return answer p € P
Aphs.t. {,pY=r+e
=(@pr=r
=@y zcr
=(npyzcr —¢€

Figure: An illustration of over non-adaptive MIPS solver.
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An Elimination-Based Algorithm

o Note that, the standard elliptical uncertainty for linear bandits can be
written as:

Ixally-s = {xax), V7).

Hence, we can easily query the arm with the highest uncertainty with
MIPS solver.

o To get rid of the bad arm with high uncertainty, we can just eliminate
those obviously bad arm during the interaction with the environments.

@ Can be also adapted to the settings with slowly changed arm set.

o For the details, see our paper.
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An Elimination-Based Algorithm

Theorem (Regret and time complexity of the Elimination-Based Algorithm)

For any ¢ € (0, 1), with probability at least 1 — §, the regret is bounded by
R(T) = O (av/T +n(T)- T)

with n(T) controlling the approximate MIPS accuracy.

4
1-9( g(g§>T)+o(|og—°~45 K)

The per-step time complexity is K
complexity overhead (e.g., pre-processing) is K1to(1).

. The overall time

o

If T does not scale with K, then we can select 5(T) = ©(T~/?), that can
obtain per-step sublinear time complexity with almost no additional cost.
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A TS-Based Algorithm

@ For TS-based algorithm, we can directly query the arm with the sampled
0 from the posterior.

Theorem (Regret and time complexity of the TS-Based algorithm)

For any § € (0, 1), with probability at least 1 —§, the regret is bounded by
R(T) = O (VT +9(T)- T),
with n(T) controlling the approximate MIPS accuracy.

The per-step time complexity is K1=Om(T))+o(log™ " K) " Tha overall time
complexity overhead is K1to(1),

v

If T does not scale with K, then we can select 5(T) = ©(T~/?), that can
obtain per-step sublinear time complexity with almost no additional cost.
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Experiments

Algorithm ‘ Linear Elim  Sub-Elim, shortlist 30  Sub-Elim, shortlist 100

Regret | 3847 + 212 3795 -+ 206 3806 + 206
Time(s) 29.55 4.22 (3.47) 4.83 (4.09)
Speedup x1 x7.00 (x8.52) x6.12 (x7.22)
Algorithm | Linear TS Sub-TS, shortlist 30 Sub-TS, shortlist 100
Regret | 1193 466 1177 + 66 1202 + 68
Time(s) 29.83 19.59 (19.38) 20.63 (20.41)
Speedup x1 x1.52 (x1.54) x1.45 (x1.46)

Table: Experiments on movie recommendation with Movielens-1M. Compared
with the standard elimination-based algorithm and TS algorithm, our algorithm
can have significant acceleration without sacrificing the cumulative regret. Num-
ber in the brackets denote the time and speedup without taking the pre-processing
time into account.
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Conclusion

@ We propose a novel method to achieve sublinear per-step time complexity
in linear bandits.

o An adaptive MIPS solver is introduced, which may be of independent
interest.
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