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Multiclass Learning
Set of labels-alternatives [k] = {1, . . . , k}
The learning problem is an unknown distributionD overX× [k]
Learning Algorithm:
Input: (x1, y1), . . . , (xn, yn) i.i.d. fromD
Output: Classifier h : X → [k]
Goal: Small misclassification error on future examples fromD

E
(x,y)∼D

[1{h(x) ̸= y}]



Label Ranking: Labels are rankings of [k]
Multiclass:

• Set of labels [k]

• Observe (x, y) ∼ D
• Output h : X → [k]

• LossE(x,y)∼D[1{h(x) ̸= y}]

Label Ranking:

• Set of labels Sk

• Observe (x, σ) ∼ D
• Output h : X → Sk

• LossE(x,σ)∼D[∆(h(x), σ)]



Motivation
LR has various practical applications such as

• pattern recognition

• web advertisement

• sentiment analysis

• document categorization

• bio-informatics

Example: Adapt the ranking of the observed products according to user preferences



Motivation
Several approaches for tackling LR from the applied CS community
[Vembu and Gartner, 2010], [Zhou et al., 2014].

These solutions come with experimental evaluation and no theoretical guar-
antees; e.g., algorithms based on decision trees and random forests are a
workhorse for practical LR and lack formal theoretical guarantees.

Can we obtain theoretical guarantees and increase our understanding for al-
gorithms based on DTs and RFs in view of their practical success?



Summary of Contributions

• We give a formal theoretical generative model for LR, motivated by existing
applied CS previous works, through the lens of nonparametric regression.

• We provide the first theoretical performance guarantees for algorithms based
on decision trees and random forests for LR, under mild conditions.

• We experimentally study the robustness of our algorithms to various noise
models.

• We also study statistical LR with incomplete rankings building on the results of
[Korba et al., 2017], [Clemencon et al., 2018], [Clemencon and Korba, 2018],
[Clemencon and Vogel, 2020].



Distribution-free Nonparametric LR
[Hullermeier et al. 2008] evaluate individual alternatives through a real-valued score
function. We assume that there exists such an underlying nonparametric score
functionm⋆ : X → [0, 1]k, mapping features to score values.

Let X ⊆ Rd, C be a class of functions from X to [0, 1]k andDx be an arbitrary
distribution over X. Consider a noise distribution E over Rk. Let m⋆ be an
unknown target function in C.

An example oracle Ex(m⋆, E) with complete rankings, works as follows:

• x ∼ Dx and ξ ∼ E independently,

• σ = argsort(m⋆(x) + ξ) argsort([0.2, 1.7,−0.7]) = (2, 1, 3)

• it returns a labeled example (x, σ) ∈ X× Sk.

In the noiseless case (ξ = 0 almost surely), we simply write Ex(m⋆).
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Computational LR in ranking metric∆

The learner is given i.i.d. samples from the oracle Ex(m⋆, E) and its goal is to
efficiently output a hypothesis h : Rd → Sk such that, with high probability,
the error Ex∼Dx [∆(h(x), h⋆(x))] is small.

h⋆(x) := argsort(m⋆(x))

Efficiency: runtime is poly(d, k, 1/ϵ, log(1/δ))

In practice This problem is mainly solved using decision trees and random forests;
however, theoretical guarantees were not known for this task.



Computational LR Conditions for Theoretical Guarantees

Feature spaceX = {0, 1}d.
Regression vector-valued functionm⋆ : {0, 1}d → [0, 1]k withm⋆ = (m⋆

1, . . . ,m
⋆
k ).

We assume that the following hold for any j ∈ [k].

1. (Sparsity)m⋆
j : {0, 1}d → [0, 1] is r-sparse, i.e., it depends on r out of d

coordinates.
2. (Approximate Submodularity) The mean squared error Lj ofm⋆

j is
C-approximate-submodular, i.e., for any S ⊆ T ⊆ [d], i ∈ [d], it holds that

Lj(T)− Lj(T ∪ {i}) ≤ C · (Lj(S)− Lj(S ∪ {i})) .
TheMean Squared Error (MSE) of a function f : {0, 1}d → [0, 1] is equal to

L(f, S) = Ex∼Dx

[(
f(x)−Ew∼Dx [f(w)|wS = xS]

)2]
.
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Computational LR Contributions

We give the first theoretical guarantees for the Label Ranking problem for al-
gorithms based on decision trees and random forests in the noiseless set-
ting Ex(m⋆) and extensive experimental evidence for robustness of random
forests and shallow decision trees in the noisy case Ex(m⋆, E).

The algorithms we study [Syrgkanis and Zampetakis, 2020]:

• Decision Trees with Level Splits

• Decision Trees with Breiman

• Random Forests with Level Splits

• Random Forests with Breiman



Computational LR Result

We choose the ranking metric∆ = dSpearman

dSpearman(π, σ) =
∑

i(π(i)− σ(i))2 h⋆(x) = argsort(m⋆(x))

Theorem: Under r-sparsity and C-approximate submodularity conditions,
there exists an algorithm based on Decision Trees via Level-Splits that draws
Õ
(
log(d) · polyC,r(k/ϵ)

)
i.i.d. samples fromEx(m⋆) and, inpolyC,r(d, k, 1/ϵ)

time, computes an estimate h : {0, 1}d → Sk which, with probability 99%, sat-
isfiesEx∼Dx [dSpearman(h(x), h⋆(x))] ≤ ϵ .

Level-Splits: Every node at the same level of the tree has to split in the same
coordinate, by using the next greedy criterion: at every level, we choose the
coordinate that minimizes the total empirical mean squared error.



Computational LR

In practice, sparsity of the instance’s “score function” is one of the reasons why
such algorithms work well and efficiently in real world.

We can obtain similar results for

• Decision Trees with Breiman

• Random Forests with Level Splits and Random Forests with Breiman

Research Direction 1: Establish similar theoretical guarantees for the noisy oracle
Ex(m⋆, E)
Research Direction 2: Obtain theoretical results for LR for other practical algorithms,
e.g., based on Neural Networks.



Computational LR with Noise and Experiments

An example oracle Ex(m⋆, E) with complete rankings, works as follows:

• x ∼ Dx and ξ ∼ E independently,

• σ = argsort(m⋆(x) + ξ) // h⋆(x) = argsort(m⋆(x))

• it returns a labeled example (x, σ) ∈ X× Sk.

The noise distribution E is α-inconsistent for some α ∈ [0, 1] if

E
x∼Dx

[
Pr
ξ∼E

[h⋆(x) ̸= σ]

]
= α .



Experimental Results kτ large if rankings are similar
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A second output inconsistency index
The noise distribution E satisfies the β-kτ gap property for some β ∈ [−1, 1] if

E
x∼Dx

E
ξ∼E

[kτ (h
⋆(x), σ)] = β .



Experimental Results kτ large if rankings are similar
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Conclusion

• We give a formal theoretical generative model for LR.

• We provide the first theoretical performance guarantees for algorithms
based on decision trees and random forests for LR, under mild conditions.

• We experimentally study robustness to noise.

• We study statistical LR with incomplete rankings (see paper).

Research Directions.
1. Obtain theoretical results for Ex(m⋆, E).
2. Obtain theoretical guarantees for other practical LR algorithms.

Thank You!
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