Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes

Andrew Wagenmaker¹, Yifang Chen¹, Max Simchowitz², Simon S. Du¹, Kevin Jamieson¹

In the **reward-aware (PAC)** RL setting, the agent has access to the reward throughout exploration

In the **reward-aware (PAC)** RL setting, the agent has access to the reward throughout exploration

In the **reward-aware (PAC)** RL setting, the agent has access to the reward throughout exploration

In the reward-free setting, the agent is only given the reward after exploring

In the **reward-aware (PAC)** RL setting, the agent has access to the reward throughout exploration

In the reward-free setting, the agent is only given the reward after exploring

Intuitively, we would expect reward-free RL to be harder than reward-aware RL

Intuitively, we would expect reward-free RL to be harder than reward-aware RL

In tabular MDPs:

Intuitively, we would expect reward-free RL to be harder than reward-aware RL

In tabular MDPs:

Optimal rate for **reward-aware** RL = $\Theta\left(\frac{SA}{\epsilon^2}\right)$

Intuitively, we would expect reward-free RL to be harder than reward-aware RL

In tabular MDPs:

Optimal rate for **reward-aware** RL = $\Theta\left(\frac{SA}{\epsilon^2}\right)$

Optimal rate for **reward-free** RL = $\Theta\left(\frac{S^2A}{\epsilon^2}\right)$

In real-world settings, state spaces are often large or infinite, and we must turn to **function approximation**

In real-world settings, state spaces are often large or infinite, and we must turn to **function approximation**

Is reward-free RL harder than reward-aware RL in MDPs with large state-spaces?

In real-world settings, state spaces are often large or infinite, and we must turn to function approximation

Is reward-free RL harder than reward-aware RL in MDPs with large state-spaces?

We consider **linear MDPs** (Jin et al., 2020), parameterized by d-dimensional feature vectors ϕ :

$$P_h(s'|s,a) = \langle \phi(s,a), \mu_h(s') \rangle, \quad r_h(s,a) = \langle \phi(s,a), \theta_h \rangle$$

In the setting of Linear MDPs, we develop a computationally efficient **reward-free** algorithm with complexity of:

$$\tilde{\mathcal{O}}\left(d^2H^5/\epsilon^2\right)$$

In the setting of Linear MDPs, we develop a computationally efficient **reward-free** algorithm with complexity of:

$$\tilde{\mathcal{O}}\left(d^2H^5/\epsilon^2\right)$$

We show a lower bound on reward-aware RL of:

$$\Omega \left(d^2H^2/\epsilon^2 \right)$$

In the setting of Linear MDPs, we develop a computationally efficient **reward-free** algorithm with complexity of:

$$\tilde{\mathcal{O}}\left(d^2H^5/\epsilon^2\right)$$

We show a lower bound on reward-aware RL of:

$$\Omega \left(d^2H^2/\epsilon^2 \right)$$

Our results imply the surprising conclusion that, up to H factors, reward-free RL is no harder than reward-aware RL in linear MDPs

In the setting of Linear MDPs, we develop a computationally efficient **reward-free** algorithm with complexity of:

$$\tilde{\mathcal{O}}\left(d^2H^5/\epsilon^2\right)$$

We show a lower bound on reward-aware RL of:

$$\Omega \left(d^2H^2/\epsilon^2 \right)$$

Our results imply the surprising conclusion that, up to H factors, reward-free RL is no harder than reward-aware RL in linear MDPs

Our results are the first dimension-optimal, computationally efficient bounds for linear MDPs

Phase 1 (Exploration)

Phase 1 (Exploration)

Assume we have collected covariates
$$\Lambda_k = \sum_{\tau=1}^K \phi_\tau \phi_\tau^\top + \lambda I$$
, set: $r^k(\phi) \sim \|\phi\|_{\Lambda_k^{-1}}^2$

Phase 1 (Exploration)

Assume we have collected covariates $\Lambda_k = \sum_{\tau=1}^K \phi_\tau \phi_\tau^\top + \lambda I$, set: $r^k(\phi) \sim \|\phi\|_{\Lambda_k^{-1}}^2$

Run regret minimization algorithm on r^k to incentivize exploration

Phase 1 (Exploration)

Assume we have collected covariates $\Lambda_k = \sum_{\tau=1}^K \phi_\tau \phi_\tau^\top + \lambda I$, set: $r^k(\phi) \sim \|\phi\|_{\Lambda_{\overline{\iota}}^{-1}}^2$

Run regret minimization algorithm on r^k to incentivize exploration

Key Idea: If we run a *first-order* regret minimization algorithm, the cost of "learning to explore" is absorbed in a lower-order $\mathcal{O}(1/\epsilon)$ term

Phase 1 (Exploration)

Assume we have collected covariates $\Lambda_k = \sum_{\tau=1}^K \phi_\tau \phi_\tau^\top + \lambda I$, set: $r^k(\phi) \sim \|\phi\|_{\Lambda_{\overline{\iota}}^{-1}}^2$

Run regret minimization algorithm on r^k to incentivize exploration

Key Idea: If we run a *first-order* regret minimization algorithm, the cost of "learning to explore" is absorbed in a lower-order $\mathcal{O}(1/\epsilon)$ term

Phase 2 (Policy Construction)

Phase 1 (Exploration)

Assume we have collected covariates $\Lambda_k = \sum_{\tau=1}^K \phi_\tau \phi_\tau^\top + \lambda I$, set: $r^k(\phi) \sim \|\phi\|_{\Lambda_k^{-1}}^2$

Run regret minimization algorithm on r^k to incentivize exploration

Key Idea: If we run a *first-order* regret minimization algorithm, the cost of "learning to explore" is absorbed in a lower-order $\mathcal{O}(1/\epsilon)$ term

Phase 2 (Policy Construction)

Given data from exploring, construct an "optimistic" policy using a leastsquares value-iteration procedure

Thanks!