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Motivation

In real-world settings, state spaces are often large or 
infinite, and we must turn to function approximation

Is reward-free RL harder than reward-aware RL in 
MDPs with large state-spaces?

We consider linear MDPs (Jin et al., 2020), 
parameterized by -dimensional feature vectors :d ϕ
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Ph(s′ |s, a) = ⟨ϕ(s, a), μh(s′ )⟩, rh(s, a) = ⟨ϕ(s, a), θh⟩
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Our Contributions

In the setting of Linear MDPs, we develop a computationally efficient reward-
free algorithm with complexity of:

We show a lower bound on reward-aware RL of:

Our results imply the surprising conclusion that, up to  factors, reward-free RL 
is no harder than reward-aware RL in linear MDPs

H

Our results are the first dimension-optimal, computationally efficient bounds 
for linear MDPs
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Algorithm

Phase 1 (Exploration)
Assume we have collected covariates , set:Λk = ∑K

τ=1 ϕτϕ⊤
τ + λI

                                            rk(ϕ) ∼ ∥ϕ∥2
Λ−1

k

Run regret minimization algorithm on  to incentivize explorationrk

Key Idea: If we run a first-order regret minimization algorithm, the cost of 
“learning to explore” is absorbed in a lower-order  term%(1/ϵ)

Phase 2 (Policy Construction)
Given data from exploring, construct an “optimistic” policy using a least-
squares value-iteration procedure
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Thanks!


