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Motivation

Intuitively, we would expect reward-free RL to be
harder than reward-aware RL
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Motivation

In real-world settings, state spaces are often large or
iInfinite, and we must turn to function approximation

$
0000
LR

L LURCAN
3

%
694 '
VAN
()
¢ X
(. 0

'
%

.

Itl; G;l\

ALL SYS TEMS GO

s e

L
'v:e .:.' 4
L

SONG S AFEGUA l) WHEN GENF
A LACARTE lR\ Sl Rl GOT ‘SELFISH




Motivation

=
x
-
Pﬁr ~
- 4
-
=
>
=

.-.‘.
eeer
>
%% 00

‘
9\
N
)

¢
’

) A \
ON
‘ul
3
¢

In real-world settings, state spaces are often large or
iInfinite, and we must turn to function approximation
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Motivation

In real-world settings, state spaces are often large or
iInfinite, and we must turn to function approximation

|Is reward-free RL harder than reward-aware RL In

MDPs with large state-spaces”?

We consider linear MDPs (Jin et al., 2020),
parameterized by d-dimensional feature vectors ¢:

Py(s'l's,a) = (@(s,a), w(s")), 1(s,a) = (P(s,a),0,)
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Our Contributions

In the setting of Linear MDPs, we develop a computationally efficient reward-
free algorithm with complexity of:

O (d2H5/€2)
We show a lower bound on reward-aware RL of:

Q2 (dsz/ez)

Our results imply the surprising conclusion that, up to H factors, reward-free RL
IS no harder than reward-aware RL in linear MDPs

Our results are the first dimension-optimal, computationally efficient bounds
for linear MDPs
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Phase 1 (Exploration)
Assume we have collected covariates A, = Zle ¢T¢TT + Al, set:

@) ~ 11

Run regret minimization algorithm on " to incentivize exploration

Key Idea: If we run a first-order regret minimization algorithm, the cost of

“learning to explore” is absorbed in a lower-order O(1/¢) term

Phase 2 (Policy Construction)
Given data from exploring, construct an “optimistic” policy using a least-

squares value-iteration procedure






