
Reward-Free RL is No Harder Than
Reward-Aware RL in Linear Markov

Decision Processes
Andrew Wagenmaker1, Yifang Chen1, Max Simchowitz2, Simon S. Du1,

Kevin Jamieson1

1. University of Washington, 2. MIT

Reward-Aware vs Reward-Free RL

2

Reward-Aware vs Reward-Free RL

In the reward-aware (PAC) RL setting, the agent has access to the reward
throughout exploration

2

Reward-Aware vs Reward-Free RL

In the reward-aware (PAC) RL setting, the agent has access to the reward
throughout exploration

2

Reward-Aware vs Reward-Free RL

In the reward-aware (PAC) RL setting, the agent has access to the reward
throughout exploration

In the reward-free setting, the agent is only given the reward after exploring

2

Reward-Aware vs Reward-Free RL

In the reward-aware (PAC) RL setting, the agent has access to the reward
throughout exploration

In the reward-free setting, the agent is only given the reward after exploring

2

Motivation

Intuitively, we would expect reward-free RL to be
harder than reward-aware RL

3

Motivation

Intuitively, we would expect reward-free RL to be
harder than reward-aware RL

In tabular MDPs:

3

Motivation

Intuitively, we would expect reward-free RL to be
harder than reward-aware RL

In tabular MDPs:

Optimal rate for reward-aware RL = Θ(SA
ϵ2)

3

Motivation

Intuitively, we would expect reward-free RL to be
harder than reward-aware RL

In tabular MDPs:

Optimal rate for reward-aware RL = Θ(SA
ϵ2)

Optimal rate for reward-free RL = Θ(S2A
ϵ2)

3

Motivation

In real-world settings, state spaces are often large or
infinite, and we must turn to function approximation

4

Motivation

In real-world settings, state spaces are often large or
infinite, and we must turn to function approximation

Is reward-free RL harder than reward-aware RL in
MDPs with large state-spaces?

4

Motivation

In real-world settings, state spaces are often large or
infinite, and we must turn to function approximation

Is reward-free RL harder than reward-aware RL in
MDPs with large state-spaces?

We consider linear MDPs (Jin et al., 2020),
parameterized by -dimensional feature vectors :d ϕ

4

Ph(s′ |s, a) = ⟨ϕ(s, a), μh(s′)⟩, rh(s, a) = ⟨ϕ(s, a), θh⟩

Our Contributions

In the setting of Linear MDPs, we develop a computationally efficient reward-
free algorithm with complexity of:

5

%̃ (d2H5/ϵ2)

Our Contributions

In the setting of Linear MDPs, we develop a computationally efficient reward-
free algorithm with complexity of:

We show a lower bound on reward-aware RL of:

5

%̃ (d2H5/ϵ2)

Ω (d2H2/ϵ2)

Our Contributions

In the setting of Linear MDPs, we develop a computationally efficient reward-
free algorithm with complexity of:

We show a lower bound on reward-aware RL of:

Our results imply the surprising conclusion that, up to factors, reward-free RL
is no harder than reward-aware RL in linear MDPs

H

5

%̃ (d2H5/ϵ2)

Ω (d2H2/ϵ2)

Our Contributions

In the setting of Linear MDPs, we develop a computationally efficient reward-
free algorithm with complexity of:

We show a lower bound on reward-aware RL of:

Our results imply the surprising conclusion that, up to factors, reward-free RL
is no harder than reward-aware RL in linear MDPs

H

Our results are the first dimension-optimal, computationally efficient bounds
for linear MDPs

5

%̃ (d2H5/ϵ2)

Ω (d2H2/ϵ2)

Algorithm

6

Algorithm

Phase 1 (Exploration)

6

Algorithm

Phase 1 (Exploration)
Assume we have collected covariates , set:Λk = ∑K

τ=1 ϕτϕ⊤
τ + λI

 rk(ϕ) ∼ ∥ϕ∥2
Λ−1

k

6

Algorithm

Phase 1 (Exploration)
Assume we have collected covariates , set:Λk = ∑K

τ=1 ϕτϕ⊤
τ + λI

 rk(ϕ) ∼ ∥ϕ∥2
Λ−1

k

Run regret minimization algorithm on to incentivize explorationrk

6

Algorithm

Phase 1 (Exploration)
Assume we have collected covariates , set:Λk = ∑K

τ=1 ϕτϕ⊤
τ + λI

 rk(ϕ) ∼ ∥ϕ∥2
Λ−1

k

Run regret minimization algorithm on to incentivize explorationrk

Key Idea: If we run a first-order regret minimization algorithm, the cost of
“learning to explore” is absorbed in a lower-order term%(1/ϵ)

6

Algorithm

Phase 1 (Exploration)
Assume we have collected covariates , set:Λk = ∑K

τ=1 ϕτϕ⊤
τ + λI

 rk(ϕ) ∼ ∥ϕ∥2
Λ−1

k

Run regret minimization algorithm on to incentivize explorationrk

Key Idea: If we run a first-order regret minimization algorithm, the cost of
“learning to explore” is absorbed in a lower-order term%(1/ϵ)

Phase 2 (Policy Construction)

6

Algorithm

Phase 1 (Exploration)
Assume we have collected covariates , set:Λk = ∑K

τ=1 ϕτϕ⊤
τ + λI

 rk(ϕ) ∼ ∥ϕ∥2
Λ−1

k

Run regret minimization algorithm on to incentivize explorationrk

Key Idea: If we run a first-order regret minimization algorithm, the cost of
“learning to explore” is absorbed in a lower-order term%(1/ϵ)

Phase 2 (Policy Construction)
Given data from exploring, construct an “optimistic” policy using a least-
squares value-iteration procedure

6

Thanks!

