Online Algorithms with
Multiple Predictions

Keerti Anand?, Rong Ge!, Amit Kumar?, Debmalya Panigrahi’

1Department of Computer Scien
’Department of Computer Scien

ce, Duke University
ce, Indian Institute of Technology Delhi

Introduction

Online Algorithms with Predictions: An attempt to bypass the pessimistic worst-case bounds of
traditional algorithm design.

Design an algorithm whose performance improves with the accuracy of the prediction; yet maintaining an
inherent worst-case guarantee. Example Problems : Ski Rental, Scheduling, Caching, Matching and
Secretary Problems.

Algorithms with Multiple Predictions

Multiple Predictions Setting: Instead of one prediction, what if we get multiple sets of predictions?
Multiple ML algorithms, human experts can suggest their suitable solutions.

Some solutions can be arbitrarily bad but as long as one solution is good, our algorithm should be able to
find it.

Goal: Online algorithm whose performance is competitive against that of the best predictor

Online Covering Framework

min E Ci*I; [Objective }

E Tl . > At each stepj:
aﬂ”] 'CEZ _— 1 [Newcovering constraint arrives!}

Applications

The Online Covering Framework (OCF) can be applied to online versions of a variety of problems such as:

1. SetCover
2. Caching
3. Facility Location*

Uses an extension of online covering framework that has box-constraints

Online Covering with Multiple Predictions

n
. . . o
j-th covering constraint arrives! Z aij - T > 1
1=1
We get k sets of suggestions: £L; — X; (], S)

Benchmark:

e Anoptimal solution that chooses the same suggestion in each time step. [STATIC]

e Anoptimal solution that chooses any of the suggestions in each time step [DYNAMIC]

Our Results

Theorem 2.1. There is an algorithm for the online covering problem with k suggestions that has a
competitive ratio of O(logk), even against the DYNAMIC benchmark.

Theorem 2.2. The competitive ratio of any algorithm for the online covering problem with k sugges-
tions is Q(log k), even against the STATIC benchmark.

Algorithm Intuition

The rate at which a variable is increased depends on three
key factors:

1. Howstrongly avariable is suggested?
2. How costly the variable is?

3. How much it contributes to the covering constraint?

e N
If a variable shows up in multiple suggestions,
we should increase it faster!

N Y,
4 N
If a variable is costly, then we should increase it

slowly!
(. J

Higher the contribution to the covering constraint,
faster we should increase the variable

Algorithm 1: Online Covering Algorithm

1.1 Offline: All variables z; are initialized to 0.
1.2 Online: On arrival of the j-th constraint:

° mn]_
1.3 while) " a;;7; < 3,
1.4 for i € [n]

: 1 : . dr; _ %ij (... -
1.5 if z; < 3, increase z; by |7t = 72 (@i + 6 - zij))

1.6 where § = ¢ and z;; = > ,_; z:(J, 5).

At each time, element j arrives and we must have

Online Set Cover enough sets in our solution to cover it

n
i1 man g Ci * T
i=1

; n
-m i E aij - i > 1
i=1

aij =1

Robustification

Theorem 2.3. Suppose a class of online covering problems have an online algorithm (without pre-
dictions) whose competitive ratio is a. Then, there is an algorithm for this class of online covering
problems with k suggestions that produces an online solution whose cost is at most O(min{logk -
DYNAMIC, « - opt}).

Conclusion

We give a general recipe to design online algorithms for covering with multiple machine-learned predictions.

Future Extensions:
Packing problems such as budgeted allocation.

Covering problems with non-linear (convex) objectives.

