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NEURAL NETWORK QUANTIZATION

▪Convert a floating-point model to low-precision format

▪Reduce hardware cost of implementation

▪Focus on integer quantization
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▪Problem: Quantization to low bit-width induces large noise

▪Solution: Improve quantization using clipping

related works on quantization and clipping are surveyed in our paper 



OPTIMALLY CLIPPED QUANTIZATION

▪ Mean squared error (MSE) 𝐽 = 𝐸 𝑄 𝑋 − 𝑋 2

▪ Analytical: 𝐽 =
4−𝐵
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▪ Empirical: averaged over tensor entries 

▪ Both curves closely track each other

data corresponds to pre-trained ResNet-50 model
activations obtained by randomly sampling training set

▪ There exists an optimal choice of clipping scalar 𝑠∗

▪ Balances clipping and discretization noise

▪ 𝑠 < 𝑠∗ ⇒ excess clipping

▪ 𝑠 > 𝑠∗ ⇒ large quantization step

▪ Optimum depends on number of bits

▪ 𝑠∗@4-bit ≠ 𝑠∗@6-bit ≠ s∗@8-bit

▪ Optimum depends on data distribution

▪ 𝑠∗@WL-17 ≠ 𝑠∗@WL-45 ≠ s∗@AL-13 ≠ 𝑠∗@AL-24 ≠ ⋯

▪ How can we find this optimum?



FINDING OPTIMAL CLIPPING SCALAR

▪ Both approaches are computationally inefficient

▪ Can be done offline (for weights) but takes a very long time

▪ Unrealistic for dynamic activations

▪ Our contribution: an algorithm to find this optimum on the fly
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Histogram

Numerical integration

▪ Using analytical formula:

▪ Build histogram to approximate data distribution

▪ Numerically integrate MSE for every candidate 𝑠

▪ Empirically measure MSE 𝐽 = 𝐸 𝑄 𝑋 − 𝑋 2

▪ Quantize tensor and evaluate square differences

▪ Repeat for every candidate 𝑠

weight data from an arbitrary layer in ResNet-50



OPTIMIZING CLIPPING SCALARS ON THE FLY

▪ OCTAV: Optimally Clipped Tensors and Vectors

▪ Fast recursive algorithm based on the Newton-Raphson method to determine MSE-minimizing clipping scalar 𝑠∗

▪ Quickly computes 𝑠∗ for every tensor at every iteration

▪ QAT is implemented with minimum quantization noise

▪ Main idea

▪ Optimal clipping scalar: 𝑠0 = argmin 𝐽 𝑠 =
4−𝐵
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▪ Newton-Raphson method: 𝑠𝑛+1 = 𝑠𝑛 −
𝐽′(𝑠𝑛)

𝐽′′(𝑠𝑛)

▪ Resulting recursion: 𝑠𝑛+1 =
𝑬 𝑋 ⋅𝟏 𝑋 >𝑠𝑛
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▪ Mathematical details and proofs in paper



MAGNITUDE-AWARE DIFFERENTIATION

• Gradient is over-estimated

• Excess variance is back-propagated

• Exploding gradients and instability

PWL Derivative

• Gradient zeroed out in clipping region

• Large-valued weights not updated

• Early stoppage of convergence

close to unity gradients

close to zero gradients

▪Treat clipping as magnitude attenuation operation
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▪ Smaller clipped values have gradients close to but less than unity

▪ Larger clipped values have gradients close to but greater than zero



SELECTED EMPIRICAL RESULTS

Network ResNet

50

ResNet

101

MobileNet

V2

MobileNet

V3-Large

Training-from-scratch 

Dynamic OCTAV

75.15

(-0.92)

76.48

(-0.80)

70.88

(-0.83)

65.86

(-7.11)

Retraining 
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4-bit ImageNet Networks Finetuned Language Models

dynamic-OCTAV (solid) & static-OCTAV (dashed)

▪ SOTA accuracy achieved

▪ 4-bit training and retraining of ImageNet networks

▪ BERT finetuning at very low precision

▪ Our results require no modification to the training recipe

baseline accuracies: ResNet-50 (76.07), ResNet-101 (77.28), MobileNet-V2 (71.71), MobileNet-V3-Large (72.97), BERT-Large (91.00), BERT-Base (88.24)



CONCLUSION

▪ Optimally Clipped Tensors and Vectors

▪ Magnitude-Aware Differentiation

▪ Empirical results show OCTAV-enabled QAT has SOTA accuracy

▪ Future work: other number formats, fully quantized training, alternate metrics to MSE, beyond quantization


