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- OPTIMAL CLIPPING AND MAGNITUDE-AWARE DIFFERENTIATION

*. FOR IMPROVED QUANTIZATION-AWARE TRAINING
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NEURAL NETWORK QUANTIZATION

max-scaled quantization

fast math
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clipped quantization

= Convert a floating-point model to low-precision format o1 /ﬁ\
= Reduce hardware cost of implementation
= Focus on integer quantization

Tensor PDF

= Problem: Quantization to low bit-width induces large noise  * \

= Solution: Improve quantization using clipping e 0e S04 0z o0 02 08 06 0

Value

<A NVIDIA.
related works on quantization and clipping are surveyed in our paper tensor PDF obtained from an arbitrary weight layer in GPT-2



OPTIMALLY CLIPPED QUANTIZATION

Mean squared error (MSE) | = E[(Q[X] — X)?]

_B 0
Analytical: J = s [ fix ()dx + [ (s — x)2fix| (x)dx
Empirical: averaged over tensor entries
Both curves closely track each other

There exists an optimal choice of clipping scalar s*
Balances clipping and discretization noise
s < s* = excess clipping
s > s* = large quantization step

Optimum depends on number of bits
s*@4-bit # s*@6-bit # s*@8-bit

Optimum depends on data distribution
s*@WL-17 # s*@WL-45 # s*@AL-13 # s*@AL-24 # ---

How can we find this optimum?

10° Weight Layer #17 : 10° Weight Layer #45 :
— analytical — analyticall|
-- empirical --- empirical||
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data corresponds to pre-trained ResNet-50 model nVIDIA

activations obtained by randomly sampling training set



FINDING OPTIMAL CLIPPING SCALAR

Using analytical formula: Empirically measure MSE J = E[(Q[X] — X)?]
Build histogram to approximate data distribution Quantize tensor and evaluate square differences
Numerically integrate MSE for every candidate s Repeat for every candidate s

Weight Layer #17

107

Numerical integration

4—B S 0o
)= | fua@+ | = 0 s

Histogram

MSE

5 H
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CIippir?SOScaIar
Both approaches are computationally inefficient

Can be done offline (for weights) but takes a very long time

Unrealistic for dynamic activations

Our contribution: an algorithm to find this optimum on the fly

NVIDIA.
weight data from an arbitrary layer in ResNet-50



OPTIMIZING CLIPPING SCALARS ON THE FLY

OCTAV: Optimally Clipped Tensors and Vectors

Fast recursive algorithm based on the Newton-Raphson method to determine MSE-minimizing clipping scalar s*
Quickly computes s* for every tensor at every iteration

QAT is implemented with minimum quantization noise
Main idea
-B
Optimal clipping scalar: s, = argminJ(s) = 4TSZE[LUXKS}] + E[(s — IXD? - 1x>s1]

Newton-Raphson method: s,,,; = s, — ]],I,((Zn))

[e]

|
| 3 E[1{|X|<3n}]+E[1{|X|>Sn}]|

=]

. . E[1x]1 [
Resulting recursmn::sn+1 = =3 [1X1 1115571 _ /\

Tensor PDF
&

Mathematical details and proofs in paper
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1.0

0.81

MAGNITUDE-AWARE DIFFERENTIATION

STE Derivative

1
INE

Gradient is over-estimated

Excess variance is back-propagated
Exploding gradients and instability

=3 -2 ¥ 0 | | 2 3

1.2

| |
PWL Derivative
| | | ' |

Gradient zeroed out in clipping region
Large-valued weights not updated

Early stoppage of convergence

0.4

0.2

0.0

_0.2_

1.2

Magnitude-aware Derivative

clo$e to unity gradients

close to zero gradients

-3 -2 -1 0 1 2 3

Treat clipping as magnitude attenuation operation
dx = (1{xe[ —ssy F o |x| Lipg- Ss]}) dy

Smaller clipped values have gradients close to but less than unity
Larger clipped values have gradients close to but greater than zero

NVIDIA.



4-bit ImageNet Networks

SELECTED EMPIRICAL RESULTS

Network ResNet | ResNet | MobileNet | MobileNet
50 101 V2 V3-Large
Training-from-scratch | 75.15 76.48 70.88 65.86
Dynamic OCTAV (-0.92) | (-0.80) (-0.83) (-7.11)
Retraining 76.21 76.84 71.23 69.21
Dynamic OCTAV (+0.14) | (-0.44) (-0.48) (-3.76)
Retraining 76.46 77.48 1.21 0.60
Static OCTAV (+0.39) | (+0.20) (-70.50) (-72.37)

SOTA accuracy achieved
4-bit training and retraining of ImageNet networks
BERT finetuning at very low precision

Our results require no modification to the training recipe

F1 Score on SQUAD
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Finetuned Language Models
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87.67 8802
BERT-Large
83 —BERT-Base
dynamic-OCTAV (solid) & static-OCTAV (dashed)
4 5 6 7 8
Bit-width

NVIDIA.

baseline accuracies: ResNet-50 (76.07), ResNet-101 (77.28), MobileNet-V2 (71.71), MobileNet-V3-Large (72.97), BERT-Large (91.00), BERT-Base (88.24)



CONCLUSION

Optimally Clipped Tensors and Vectors
Magnitude-Aware Differentiation

Empirical results show OCTAV-enabled QAT has SOTA accuracy

Future work: other number formats, fully quantized training, alternate metrics to MSE, beyond quantization

NVIDIA.



