Generating 3D Molecules for Target Protein Binding

Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, Shuiwang Ji ICML 2022

Structure-Based Drug Design

> Design molecules (ligands) that can bind to a specific target protein

- > Deep learning methods become promising since there are large-scale datasets of proteinligand complex structures
 - ❖ PDBbind (Liu et al., 2017) and CrossDocked2020 (Francoeur et al., 2020)

Challenges

- Complicated conditional information
 - ❖ 3D geometric structure
 - * Chemical interaction

Challenges

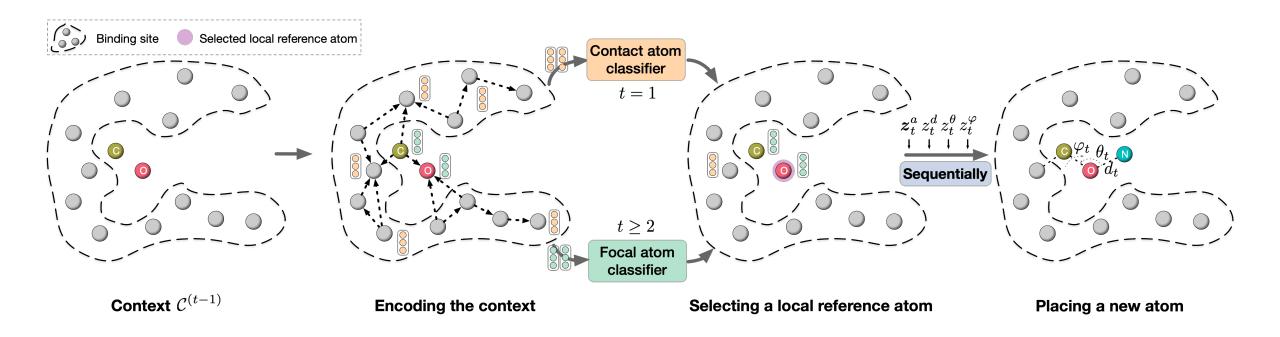
- Complicated conditional information
 - * 3D geometric structure
 - * Chemical interaction
- Challenging search space
 - * Enormous chemical space
 - Continuous 3D space

Challenges

- Complicated conditional information
 - * 3D geometric structure
 - * Chemical interaction
- Challenging search space
 - * Enormous chemical space
 - Continuous 3D space
- Equivariance property

The Proposed GraphBP: Overview

- > Generate molecules that bind to given proteins, with considering the above challenges
 - Sequentially generate one atom per step based on the intermediate context



Notations

- > 3D geometry of a molecule $\mathcal{M} = \{(\boldsymbol{a}_i, \boldsymbol{r}_i)\}_{i=1}^n$
 - * a_i is a one-hot vector indicating the atom type
 - * $r_i \in \mathbb{R}^3$ denotes a Cartesian coordinate
 - * *n* is the number of atoms
- \triangleright Similarly, the corresponding binding site of a protein is $\mathcal{P} = \{(\boldsymbol{b}_j, \boldsymbol{s}_j)\}_{j=1}^m$

 \triangleright Our generative model aims to capture the conditional distribution $p(\mathcal{M}|\mathcal{P})$

Sequential Generation

- Place atoms in the given binding site one by one
 - \bullet Context at the step t = the binding site + atoms placed in the previous t 1 steps

$$C^{(t-1)} = P \cup \{(a_i, r_i)\}_{i=1}^{t-1}$$

Generate the atom type and the coordinate based on the context

$$egin{align} oldsymbol{a}_t &= g^a \left(\mathcal{C}^{(t-1)}; oldsymbol{z}_t^a
ight), \ oldsymbol{r}_t &= g^r \left(\mathcal{C}^{(t-1)}, oldsymbol{a}_t; oldsymbol{z}_t^r
ight), \ \mathcal{C}^{(t)} \leftarrow \mathcal{C}^{(t-1)} \cup \{ (oldsymbol{a}_t, oldsymbol{r}_t) \}. \end{split}$$
 Update the context

 g^a , g^r : parameterized autoregressive functions

 z_t^a , z_t^r : latent variables in the flow model (introduced later)

Encoding the Context

 \triangleright Construct a graph $\mathcal{G}^{(t-1)}$ for the context $\mathcal{C}^{(t-1)}$ by considering certain cutoff distance

> Employ a 3D GNN over the 3D graph to obtain node representations

$$\{\boldsymbol{h}_1^{(t)}, \cdots, \boldsymbol{h}_{m+t-1}^{(t)}\} = 3\text{DGNN}\left(\mathcal{G}^{(t-1)}\right)$$

- * The first embedding layer: different learnable embeddings to differentiate ligand atoms from protein atoms
- Aggregation of each 3D GNN layer

$$oldsymbol{h}_{k}^{(t,\ell)} = oldsymbol{h}_{k}^{(t,\ell-1)} + \sum_{u \in \mathcal{N}(k)} oldsymbol{h}_{u}^{(t,\ell-1)} \odot ext{MLP}^{\ell}\left(oldsymbol{e}_{ ext{RBF}}\left(d_{uk}
ight)
ight)$$

Radial Basis Functions

The obtained representations are invariant to the rotation and translation of the context

Generate coordinates that are equivariant to any rigid transformation (RT) of the binding site

$$g^{a}\left(\mathcal{C}^{(t-1)}; \boldsymbol{z}_{t}^{a}\right) = g^{a}\left(\operatorname{RT}\left(\mathcal{C}^{(t-1)}\right); \boldsymbol{z}_{t}^{a}\right),$$
 $\operatorname{RT}\left(g^{r}\left(\mathcal{C}^{(t-1)}, \boldsymbol{a}_{t}; \boldsymbol{z}_{t}^{r}\right)\right) = g^{r}\left(\operatorname{RT}\left(\mathcal{C}^{(t-1)}\right), \boldsymbol{a}_{t}; \boldsymbol{z}_{t}^{r}\right)$

Generate coordinates that are equivariant to any rigid transformation (RT) of the binding site

$$egin{aligned} g^a\left(\mathcal{C}^{(t-1)};oldsymbol{z}_t^a
ight) &= g^a\left(ext{RT}\left(\mathcal{C}^{(t-1)}
ight);oldsymbol{z}_t^a
ight), \ ext{RT}\left(g^r\left(\mathcal{C}^{(t-1)},oldsymbol{a}_t;oldsymbol{z}_t^r
ight)
ight) &= g^r\left(ext{RT}\left(\mathcal{C}^{(t-1)}
ight),oldsymbol{a}_t;oldsymbol{z}_t^r
ight) \end{aligned}$$

It is straightforward to generate invariant atom type with the obtained representations. How to generate coordinates equivariantly?

Generate coordinates that are equivariant to any rigid transformation (RT) of the binding site

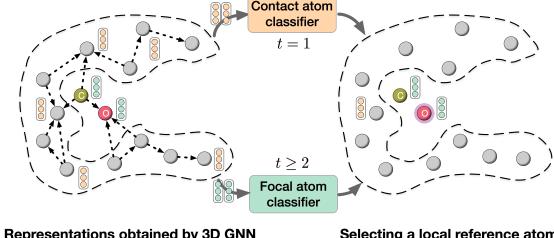
$$egin{aligned} g^a\left(\mathcal{C}^{(t-1)};oldsymbol{z}_t^a
ight) &= g^a\left(ext{RT}\left(\mathcal{C}^{(t-1)}
ight);oldsymbol{z}_t^a
ight), \ ext{RT}\left(g^r\left(\mathcal{C}^{(t-1)},oldsymbol{a}_t;oldsymbol{z}_t^r
ight)
ight) &= g^r\left(ext{RT}\left(\mathcal{C}^{(t-1)}
ight),oldsymbol{a}_t;oldsymbol{z}_t^r
ight). \end{aligned}$$

- It is straightforward to generate invariant atom type with the obtained representations. How to generate coordinates equivariantly?
 - * Construct a local spherical coordinate system (SCS) that is equivariant to the context
 - Generate the invariant 3-tuple $(d_t, \theta_t, \varphi_t)$ w.r.t. the constructed SCS
 - ❖ G-SchNet (Gabauer et al., 2019), MolGym (Simm et al., 2020), G-SphereNet (Luo & Ji, 2022)

- > Contact atom classifier (t = 1) over protein atoms
- Focal atom classifier $(t \ge 2)$ over previously generated ligand atoms



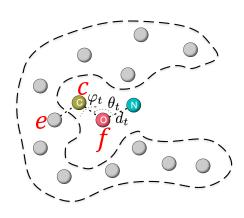
- Contact atom classifier (t = 1) over protein atoms
- Focal atom classifier $(t \ge 2)$ over previously generated ligand atoms



Representations obtained by 3D GNN

Selecting a local reference atom

- Three points in the 3D space to defined a SCS
 - Consider the two atoms in the context that are closest and second closest to the selected local reference atom
 - This SCS is equivariant to the context naturally
 - Generate the invariant 3-tuple $(d_t, \theta_t, \varphi_t)$ w.r.t. the constructed SCS to place the new atom



Placing A New Atom

- Generate the invariant 3-tuple $(d_t, \theta_t, \varphi_t)$ with the context-encoded representations $(\boldsymbol{h}_f^{(t)}, \boldsymbol{h}_c^{(t)}, \boldsymbol{h}_e^{(t)})$
 - The representations are also invariant
 - Generate variables sequentially as $a_t \to d_t \to \theta_t \to \varphi_t$ to capture the underlying dependencies

$$\mathbf{a}_{t} = g^{a} \left(\mathcal{C}^{(t-1)}; \mathbf{z}_{t}^{a} \right),$$

$$d_{t} = g^{d} \left(\mathcal{C}^{(t-1)}, \mathbf{a}_{t}; z_{t}^{d} \right),$$

$$\theta_{t} = g^{\theta} \left(\mathcal{C}^{(t-1)}, \mathbf{a}_{t}, d_{t}; z_{t}^{\theta} \right),$$

$$\varphi_{t} = g^{\varphi} \left(\mathcal{C}^{(t-1)}, \mathbf{a}_{t}, d_{t}, \theta_{t}; z_{t}^{\varphi} \right),$$

- * Flow model: a parameterized invertible transformation function from the latent variable to the variable of interest
 - Training: map observed variables to latent variables, and maximize their likelihood
 - Generation: sample latent variables from known prior Gaussian distributions, and then map them to variables of interest

Training

- > Decompose a 3D molecule in a ligand-protein pair to a trajectory of atom placement steps
 - * We expect the new atom is placed in the local region of the reference atom during generation (Luo & Ji, 2022)
 - Select the atom in the binding site that is closest to the ligand as the first local reference atom (contact atom)
 - * Apply Prim's algorithm on the 3D molecular geometry to obtain the placement order of atoms in the ligand, as well as their corresponding local reference atoms.

Training

- > Decompose a 3D molecule in a ligand-protein pair to a trajectory of atom placement steps
 - * We expect the new atom is placed in the local region of the reference atom during generation (Luo & Ji, 2022)
 - Select the atom in the binding site that is closest to the ligand as the first local reference atom (contact atom)
 - * Apply Prim's algorithm on the 3D molecular geometry to obtain the placement order of atoms in the ligand, as well as their corresponding local reference atoms.

Loss functions

* Atom placement loss

❖ We can compute the log-likelihood of training data exactly thanks to the property of the flow model

Contact atom classifier loss

❖ Positive (negative) sample: Atom in the binding site that is closest (furthest) to the ligand

***** Focal atom classifier loss

* The ground truth for an atom is negative if all of its bonded atoms have been generated, otherwise positive.

Experimental Setup

- > 500k protein-ligand complexes from CrossDocked2020 for training
- > 10 target proteins for test evaluation
 - * These 10 proteins have 90 protein-ligand pairs in total. We use the corresponding ligand for reference.
 - Generate 100 molecules for each reference binding site.
 - * Evaluation metric
 - **Validity**: The percentage of chemically valid molecules among all generated molecules.
 - * ΔBinding: The percentage of generated molecules that have higher predicted binding affinity than their corresponding reference molecules.

Baseline

LiGAN is a 3D CNN based generative model for structure-based drug design. LiGAN-posterior additionally encodes the whole reference protein-ligand complex as conditional information.

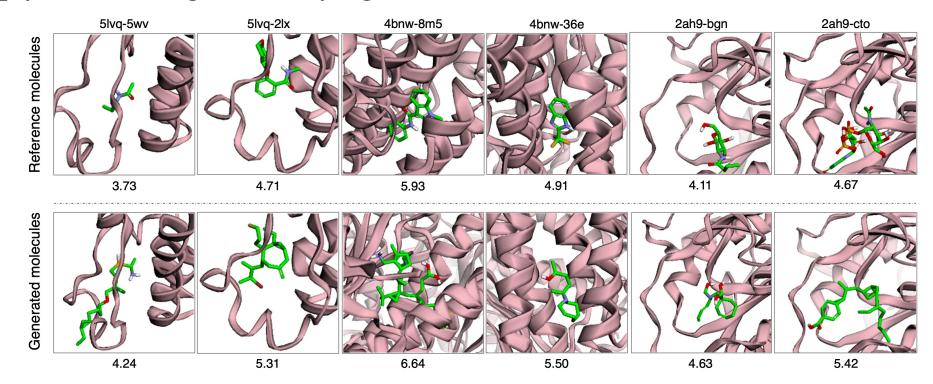
Experimental Results

Better predicted binding affinity

Table 1. Generation performance on structure-based drug design. ↑ represents that higher value indicates better performance.

Method	Validity [↑]	$\Delta Binding^{\uparrow}$
LiGAN-prior	90.9%	15.9%
LiGAN-posterior	98.5%	15.4%
GraphBP (ours)	99.7%	27.0 %

Not simply memorizing or modifying known molecules



Ablation Study

> Sequentially generate the variables is effective to capture their underlying dependencies

Table 2. Comparison on random molecular geometry generation task between our method and ablation models. $\uparrow(\downarrow)$ represents that higher (lower) value indicates better performance. The top two results in terms of each metric are highlighted as **1st** and <u>2nd</u>.

		MMD distances [↓]						
Method	Validity [↑]	C-C	C-N	С-О	Н-С	H-N	Н-О	Avg.
No dep.	25.35%	0.776	0.499	1.251	2.600	0.823	2.849	1.466
Partial dep.	<u>76.72%</u>	0.343	0.384	0.257	0.227	0.373	0.828	0.402
Ours	81.98%	0.232	0.160	0.475	0.058	0.318	0.202	0.241

