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Structure-Based Drug Design

»  Design molecules (ligands) that can bind to a specific target protein

> Deep learning methods become promising since there are large-scale datasets of protein-

ligand complex structures

PDBbind (Liu et al., 2017) and CrossDocked2020 (Francoeur et al., 2020)

Figure from PDBbind
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The Proposed GraphBP: Overview

»  Generate molecules that bind to given proteins, with considering the above challenges

< Sequentially generate one atom per step based on the intermediate context
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Notations

» 3D geometry of a molecule M = {(a;,r;)},
a; 1s a one-hot vector indicating the atom type
1; € R3 denotes a Cartesian coordinate

n 1s the number of atoms

>  Similarly, the corresponding binding site of a protein is P = {(b;, s;) }72,

>  Our generative model aims to capture the conditional distribution p(M|P)



Sequential Generation

> Place atoms in the given binding site one by one

< Context at the step t = the binding site + atoms placed in the previous ¢ — 1 steps

Ct=Y =PuU{(a;,m:)}iZ1

< Generate the atom type and the coordinate based on the context

ar = g° (C'V;2¢),
ry =g (C(t_l), at; z{) :
CW — =V U {(as,m)}. Update the context

g%, g": parameterized autoregressive functions

z{, z{ : latent variables in the flow model (introduced later)



Encoding the Context

»  Construct a graph G(t—1) for the context C(t—1) by considering certain cutoff distance

> Employ a 3D GNN over the 3D graph to obtain node representations

{h(t) .. 7h7(71;)-|—t—1 — 3DGNN (g(t—l))

< The first embedding layer: different learnable embeddings to differentiate ligand atoms from protein atoms

<+  Aggregation of each 3D GNN layer

h,(:’e) = h,(f’g_l) + Z h{ Y © MLP (egrpr (dut))

ueN (k)
Radial Basis Functions

The obtained representations are invariant to the rotation and translation of the context



Selecting A Local Reference Atom

»  Generate coordinates that are equivariant to any rigid transformation (RT) of the binding site

9 (C(H);Z?> = g" (RT (C(H)) ;Z?) :
RT (gr (C(t—l),at; z{)) =g (RT (C(t_1)> , Q) z;’)
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»  Generate coordinates that are equivariant to any rigid transformation (RT) of the binding site

g (C(H);Z?) =g° (RT (C(H)) ;Z?> ,
RT (gr (C(t_l),at; zf)) =g (RT (C(t_1)> , Q) z;’)

> It is straightforward to generate invariant atom type with the obtained representations. How

to generate coordinates equivariantly?

)
L X4

Construct a local spherical coordinate system (SCS) that is equivariant to the context

)
L X4

Generate the invariant 3-tuple (d¢, 04, ¢¢) w.r.t. the constructed SCS
< G-SchNet (Gabauer et al., 2019), MolGym (Simm et al., 2020), G-SphereNet (Luo & Ji, 2022)



Selecting A Local Reference Atom
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Selecting A Local Reference Atom
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Three points in the 3D space to defined a SCS

<  Consider the two atoms in the context that are closest and second closest to the selected local reference atom

.0

»  This SCS is equivariant to the context naturally
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Placing A New Atom

>  Generate the invariant 3-tuple (d;, 6, ¢:) with the context-encoded representations (R, Y, hD)

<+  The representations are also invariant

< Generate variables sequentially as a; — d; — 6; — ¢, to capture the underlying dependencies

a; = g° (C(t_l); Z?) ,

<+  Flow model: a parameterized invertible transformation function from the latent variable to the variable of interest

Training: map observed variables to latent variables, and maximize their likelihood

Generation: sample latent variables from known prior Gaussian distributions, and then map them to variables of interest



Training

> Decompose a 3D molecule in a ligand-protein pair to a trajectory of atom placement steps
<«  We expect the new atom is placed in the local region of the reference atom during generation (Luo & Ji, 2022)
< Select the atom in the binding site that is closest to the ligand as the first local reference atom (contact atom)

<+  Apply Prim’s algorithm on the 3D molecular geometry to obtain the placement order of atoms in the ligand, as

well as their corresponding local reference atoms.



Training

>

Decompose a 3D molecule in a ligand-protein pair to a trajectory of atom placement steps

<«  We expect the new atom is placed in the local region of the reference atom during generation (Luo & Ji, 2022)
< Select the atom in the binding site that is closest to the ligand as the first local reference atom (contact atom)
<+  Apply Prim’s algorithm on the 3D molecular geometry to obtain the placement order of atoms in the ligand, as

well as their corresponding local reference atoms.

Loss functions

< Atom placement loss

We can compute the log-likelihood of training data exactly thanks to the property of the flow model
< Contact atom classifier loss

Positive (negative) sample: Atom in the binding site that is closest (furthest) to the ligand
< Focal atom classifier loss

The ground truth for an atom is negative if all of its bonded atoms have been generated, otherwise positive.



Experimental Setup

> 500k protein-ligand complexes from CrossDocked2020 for training

» 10 target proteins for test evaluation
< These 10 proteins have 90 protein-ligand pairs in total. We use the corresponding ligand for reference.
< Generate 100 molecules for each reference binding site.
<  Evaluation metric
<+  Validity: The percentage of chemically valid molecules among all generated molecules.

ABinding: The percentage of generated molecules that have higher predicted binding affinity than their

corresponding reference molecules.

> Baseline

<+  LiGAN is a 3D CNN based generative model for structure-based drug design. LiIGAN-posterior additionally

encodes the whole reference protein-ligand complex as conditional information.



Experimental Results

> B etter pre dl cte d bln dln g afﬁnlty Table 1. Generation performance on structure-based drug design.

1 represents that higher value indicates better performance.

Method Validity"  ABinding"

LiGAN-prior 90.9% 15.9%
LiGAN-posterior  98.5% 15.4%
GraphBP (ours) 99.7 % 27.0%

>  Not simply memorizing or modifying known molecules

5lvg-5wv 5lvg-2Ix 4bnw-8m5 4bnw-36e 2ah9-bgn 2ah9-cto
| > 2 ' ~ 7 : - —

Reference molecules

Generated molecules




Ablation Study

> Sequentially generate the variables is effective to capture their underlying dependencies

Table 2. Comparison on random molecular geometry generation task between our method and ablation models. 1 () represents that
higher (lower) value indicates better performance. The top two results in terms of each metric are highlighted as 1st and 2nd.

MMD distancest
. . T
Method Validity CC CN CO HC HN HO Avg

No dep. 2535% 0.776 0499 1.251 2.600 0.823 2.849 1.466

Partial dep.  76.72%  0.343 0.384 0.257 0.227 0.373 0.828 0.402

Ours 81.98% 0.232 0.160 0.475 0.058 0.318 0.202 0.241
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