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Derivative-free Optimization

§ In many real-world applications, analytical gradient of the loss 
function is expensive to compute
• Ex: search and rescue robot on complex terrain

§ But evaluations of the loss are cheap

§ DFO: optimize objective 𝐹(𝜃) only using zeroth order (noisy) 
evaluations (f 𝜃, 𝜉 )
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Gaussian Smoothing (GS)

§ GS: estimate gradient via forward difference, using evaluations at 
randomly perturbed parameters

∇!𝐹"# 𝜃 =
1
𝑐
𝐹 𝜃 + 𝑐𝜖 − 𝐹(𝜃) 𝜖, 𝜖 ∼ 𝒩 0, 𝐼 , 𝑐 > 0

§ Under regularity conditions, converges to stationary point if 𝑐 → 0
§ Average over 𝐿 perturbations
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Generalizing GS

§ Main idea: we can sample perturbations from arbitrary distributions 
to optimize a criterion

§ Proposal: select distribution that reduces gradient estimate MSE of 
forward difference estimator w/ noisy evaluations:

∇! 6𝐹"# 𝜃 = $
%&
∑'($& ∑)($* 𝑓 𝜃 + 𝑐𝜖' , 𝜉) − 𝑓 𝜃, 𝜉) 𝜖'

§ Algorithms have same computational complexity as GS and do not 
depend on characteristics of objective
• BeS: 𝜖! standardized Bernoulli with prob. 0.5

• GS-shrinkage and BeS-shrinkage: decrease variances of GS and BeS by scaling
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Theoretical motivation

§ Theorem (informal): Assume gradient estimates have at most MSE 
𝑀 and bias B∇!𝐹(𝜃). After 𝑇 steps of SGD,

1
T
=

+
∇!𝐹(𝜃+) ,

, ≤
𝑀 + 𝑂"(1)
(1 − 2𝐵) 𝑇

where 𝑂"(1) depends on characteristics of 𝐹(𝜃)
§ To improve convergence, reduce 𝑀
§ BeS has smaller MSE than GS
• GS-shrinkage decreases the MSE for Gaussian perturbations; similarly for BeS-

shrinkage
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Experiments: RL (MuJoCo)
Linear policy, L=20, N=1

Ant Half Cheetah Random Velocity ML1-Reach
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Experiments: DFO (Nevergrad)
d=100, L=10, N=1

hmrosenbrocksphere
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Thank you for your attention!


