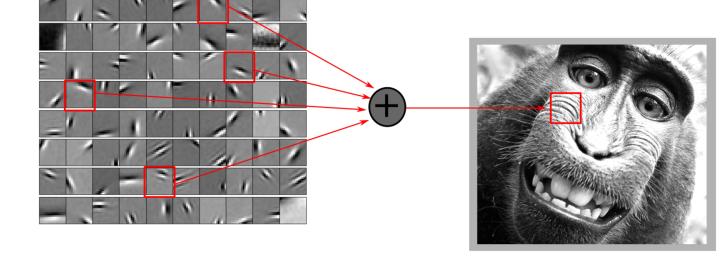
Variational Sparse Coding with Learned Thresholding

Kion Fallah, Christopher J. Rozell 39th International Conference on Machine Learning

Sparse Coding Background

CI

- It has long been desirable to learn efficient representations to model natural images.
 - (Olshausen & Field 1996) use sparse
 codes to learn representations of images.

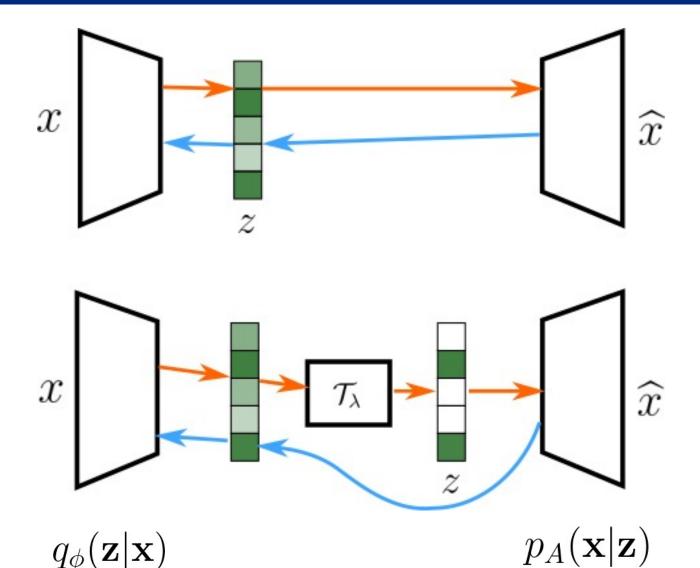


- Traditional sparse coding schemes rely on iterative optimization procedures for inference.
 - Computational bottleneck.

$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{a}_i \mathbf{z}_i + \epsilon$$

Variational Sparse Coding

Variational Sparse Coding



- Black-box variational inference (BBVI)
 allows one to bypass expensive inference
 procedures with a learned inference network.
- We propose an approach that applies a shifted soft-threshold of samples from a base distribution to incorporate sparsity.
- Orange arrows depict forward pass; blue arrows depict backwards pass.
 - Straight-through estimator to avoid numerical instability.

Variational Sparse Coding 3 / N

Details on Reparameterization

- Pass gradient directly from decoder to the inference network.
 - sg[] is identity in forward pass with partial derivative equal to zero.
 - Allow inference network to improve when a feature is not activated.

Alternative sampling motivated by (Olshausen & Field 1996) to pick best support for sparse codes.

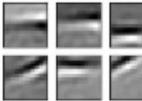
$$\mathbf{s}^k \sim q_{\phi}(\mathbf{s} \mid \mathbf{x}^k)$$

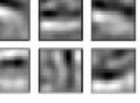
$$\widetilde{\mathbf{z}}^k = \mathbf{s}^k + \mathcal{T}_{\boldsymbol{\lambda}^k} \left(\operatorname{sg} \left[\mathbf{s}^k \right] \right) - \operatorname{sg} \left[\mathbf{s}^k \right]$$

$$\widehat{\mathcal{L}}_{max}^k = \max_j \mathcal{L}^{j,k}$$

Results on Linear Sparse Coding

Method/Prior Distribution	od/Prior Distribution Validation Los	
	J=1	J=20
FISTA (baseline)	1.01E+02	_
Gaussian	1.35E+03	1.35E+03
Laplacian	5.96E+02	5.79E+02
Spike-and-slab	2.52E+02	2.39E+02
Thresholded Gaussian	2.32E+02	2.30E+02
Thresholded Gaussian+Gamma	2.85E+02	2.70E+02
Thresholded Laplacian	1.98E+02	1.94E+02
Thresholded Laplacian+Gamma	2.23E+02	2.11E+02

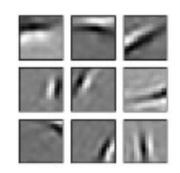




[1] Gaussian, J=1J=1

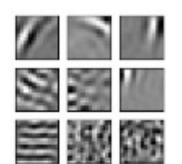
[2] Laplacian, [3] Spike-and-slab, J=1

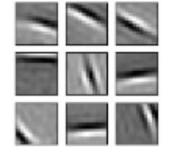
(Ours) Thresh Laplacian, J=1

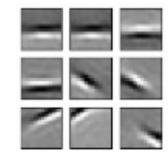


FISTA

[1] Gaussian,







J = 20

[2] Laplacian, J = 20

[3] Spike-and-slab, J = 20

(Ours) Thresh Laplacian, J=20

- [1] D. Kingma & M. Welling, Auto-Encoding Variational Bayes (2013).
- [2] G. Barello, A. Charles, & J. Pillow, Sparse-Coding Variational Auto-Encoders (2018).
- [3] F. Tonolini et al., Variational Sparse Coding (2020).

Variational Sparse Coding 5 / N

Estimating Linear Dictionary for Visualizing Features

(a) Gaussian

(b) Thresholded Gaussian+Gamma

First row: Recovered dictionary entries with highest magnitude.

Bottom row: Random dictionary entries.

- Train sparse VAE on CelebA image dataset with 512 features, 10% sparsity, and J=10 max ELBO samples.
- Recent sparse coding work shows a dictionary can be recovered using the sparse codes [1, 2].
- Dictionaries recovered from sparse VAEs better resemble independent components of input data.

[1] Isley et al., Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication (2010).

[2] K. Fallah*, A. Willats*, N. Liu, & C. Rozell, Learning sparse codes from compressed representations with biologically plausible local wiring constraints (2020).

Variational Sparse Coding 6 / N