

Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

Michael Puthawala¹

Maarten de Hoop¹, Matti Lassas², Ivan Dokmanić³

¹Rice University, ²University of Helsinki, ³University of Basel

If for
$$\ell = 1, ..., L$$
, $n_{\ell} \in \mathbb{N}$,
1. $\mathcal{T}_{\ell}^{n_{\ell}} \subset C(\mathbb{R}^{n_{\ell}}, \mathbb{R}^{n_{\ell}})$ is a flow network,
2. $\mathcal{R}_{\ell}^{n_{\ell-1}, n_{\ell}} \subset C(\mathbb{R}^{n_{\ell-1}}, \mathbb{R}^{n_{\ell}})$ is an injective ReLU layer,
then

$$\mathcal{E} = \mathcal{T}_L^{n_L} \circ \mathcal{R}_L^{n_{L-1}, n_L} \circ \cdots \circ \mathcal{T}_1^{n_1} \circ \mathcal{R}_1^{n_0, n_1} \circ \mathcal{T}_0^{n_0}$$

is always a family of injective mappings, where $\mathcal{H} \circ \mathcal{G} := \{h \circ g \colon h \in \mathcal{H}, g \in \mathcal{G}\}.$

If for
$$\ell = 1, ..., L$$
, $n_{\ell} \in \mathbb{N}$,
1. $\mathcal{T}_{\ell}^{n_{\ell}} \subset C(\mathbb{R}^{n_{\ell}}, \mathbb{R}^{n_{\ell}})$ is a flow network,
2. $\mathcal{R}_{\ell}^{n_{\ell-1}, n_{\ell}} \subset C(\mathbb{R}^{n_{\ell-1}}, \mathbb{R}^{n_{\ell}})$ is an injective ReLU layer,
then

$$\mathcal{E} = \mathcal{T}_L^{n_L} \circ \mathcal{R}_L^{n_{L-1}, n_L} \circ \cdots \circ \mathcal{T}_1^{n_1} \circ \mathcal{R}_1^{n_0, n_1} \circ \mathcal{T}_0^{n_0}$$

is always a family of injective mappings, where $\mathcal{H} \circ \mathcal{G} := \{h \circ g : h \in \mathcal{H}, g \in \mathcal{G}\}.$ When are these networks universal approximators?

Embedding Gap

We call a function f an embedding and denote if by $f \in emb(X, Y)$ if $f : X \to Y$ is continuous, injective, and $f^{-1}: f(X) \to X$ is continuous.

Definition (Embedding Gap)

lf,

- $K \subset \mathbb{R}^n$ and $W \subset \mathbb{R}^o$, both compact,
- $f \in \operatorname{emb}(K, \mathbb{R}^m)$, and $g \in \operatorname{emb}(W, \mathbb{R}^m)$ then we define

$$B_{K,W}(f,g) = \inf_{r \in \operatorname{emb}(f(K),g(W))} \|I - r\|_{L^{\infty}(f(K))}$$

where $I: f(K) \rightarrow f(K)$ is the identity function.

Let $K = S^1$ be a circle, and $f \in \operatorname{emb}(K, \mathbb{R}^3)$ an embedding of a trefoil knot into \mathbb{R}^3 . There are no $E \in \mathcal{E} := \mathcal{T} \circ \mathcal{R}$ so that E(K) = f(K).

The trivial and trefoil knots are not equivalent.

Definition (Extendable Embedding)

With the above topological difficulty in mind, we define the set of extendable embeddings as

$$\mathcal{I}(\mathbb{R}^n,\mathbb{R}^m)\coloneqq \{\Phi\circ R\in C(\mathbb{R}^n,\mathbb{R}^m)\colon R\in C(\mathbb{R}^n,\mathbb{R}^m), \Phi\in\mathbb{R}^m o\mathbb{R}^m\}$$
 .

where R is linear full-rank, and ϕ is a C¹-smooth diffeomorphism.

Theorem (P. et al. 2022)

When $m \ge 3n + 1$ and $k \ge 1$, for any C^k embedding $f \in \text{emb}^k(\mathbb{R}^n, \mathbb{R}^m)$ and compact set $K \subset \mathbb{R}^n$, there is a map in the closures of the flow type neural network $E \in \mathcal{I}^k(\mathbb{R}^n, \mathbb{R}^m)$ such that E(K) = f(K). Moreover,

$$\mathcal{I}^k(K,\mathbb{R}^m) = \operatorname{emb}^k(K,\mathbb{R}^m)$$

Let
$$\mathcal{F} = \operatorname{emb}(\mathcal{K}, \mathbb{R}^m)$$
, or $\mathcal{F} = \mathcal{I}(\mathcal{K}, \mathbb{R}^m)$.

Theorem (P. et al. 2022)

Let $\mu \in \mathcal{P}(K)$ be an absolutely continuous measure w.r.t. Lebesgue measure and

- 1. $\mathcal{R}_{\ell}^{n_{\ell-1},n_{\ell}}$ is injective,
- 2. $\mathcal{T}_{\ell}^{n_{\ell}}$ is injective, universal approximator of diffeomorphisms,
- 3. \mathcal{T}_0^n is distributionally universal and injective

Then, there is a sequence of

 $\{E_i\}_{i=1,...,\infty} \subset \mathcal{E} \coloneqq \mathcal{T}_L^{n_L} \circ \mathcal{R}_L^{n_{L-1},n_L} \circ \cdots \circ \mathcal{R}_1^{n_0,n_1} \circ \mathcal{T}_0^{n_0}$ such that

$$\lim_{i\to\infty} W_2(F_{\#}\mu, E_{i\#}\mu) = 0.$$

Optimality of layers of these deep neural networks can be established layer-by-layer.

0.6

Consider the problem of learning $\nu = f_{\#}\mu$ the following 1 dimensional distribution embedded in \mathbb{R}^3 with a network of the form

$$F_{\theta}(x) = T_2 \circ R_2 \circ T_1 \circ R_1 \circ T_0(x)$$

First, we can update $T_2 \circ R_2$ to decrease

 $B_{K,W}(f, T_2 \circ R_2)$

First, we can update $T_2 \circ R_2$ to decrease

 $B_{K,W}(f, T_2 \circ R_2)$

First, we can update $T_2 \circ R_2$ to decrease

 $B_{K,W}(f, T_2 \circ R_2)$

First, we can update $T_2 \circ R_2$ to decrease

 $B_{K,W}(f, T_2 \circ R_2)$

First, we can update $T_2 \circ R_2$ to decrease

 $B_{K,W}(f, T_2 \circ R_2)$

Now fix $T_2 \circ R_2$ and update $T_1 \circ R_1$ to decrease

 $B_{\mathcal{K},W}(f, T_2 \circ R_2 \circ T_1 \circ R_1)$

Now fix $T_2 \circ R_2$ and update $T_1 \circ R_1$ to decrease

 $B_{\mathcal{K},W}(f, T_2 \circ R_2 \circ T_1 \circ R_1)$

Now fix $T_2 \circ R_2$ and update $T_1 \circ R_1$ to decrease

 $B_{\mathcal{K},W}(f, T_2 \circ R_2 \circ T_1 \circ R_1)$

Now fix $T_2 \circ R_2$ and update $T_1 \circ R_1$ to decrease

 $B_{\mathcal{K},W}(f, T_2 \circ R_2 \circ T_1 \circ R_1)$

Now fix $T_2 \circ R_2$ and update $T_1 \circ R_1$ to decrease

 $B_{\mathcal{K},W}(f, T_2 \circ R_2 \circ T_1 \circ R_1)$

Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

Michael Puthawala¹

Maarten de Hoop¹, Matti Lassas², Ivan Dokmanić³

¹Rice University, ²University of Helsinki, ³University of Basel