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Data-Efficient RL Agent

Information-directed sampling (IDS) has demonstrated its potential as a data-efficient
reinforcement learning algorithm (Lu et al. 2021).

Existing theoretical understanding is limited to the fixed action set.

Q: What is the right design of IDS when context or observation is available?
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Contextual Bandits

® A finite set of possible contexts S. The environment samples a sequence of independent
contexts (s¢)™ , from a distribution & over S.

® Reward:
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where f is the reward function, 6* is the unknown parameter and n; 4 is 1-sub-Gaussian
noise.

® The agent receives an observation O; 4, including an immediate reward Y; 4, as well as some
side information.

® Bayesian regret of a policy x is defined as
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Conditional IDS or Contextual IDS

® Conditional information ratio:

(Ac(se) T (-lse))?
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Conditional IDS finds a probability distribution:

Te(m(vlse)) =
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® Marginal information ratio (MIR):
(s, [Ac(s) T (lso)])
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Contextual IDS minimizes MIR to find a mapping from the context space to the action
space:
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Conditional IDS or Contextual IDS

Conditional IDS myopically balances exploration and exploitation without taking the context
distribution into consideration.

Conditional IDS could either over-explore or under-explore.
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Two Popular Bandits Problems

® For contextual bandits with graph feedback, conditional IDS suffers Q(+/3(G)n) Bayesian

regret lower bound. Contextual IDS can achieve O(min{~/3(G)n, §(G)"/3n?/3)} Bayesian
regret upper bound for any prior.

Here, G is a directed feedback graph over the set of actions, B(G) is the independence
number and §(G) is the domination number of the graph.

In the regime where B(G) > (8(G)%n)!/3, contextual IDS achieves better regret bound than
conditional IDS.

® For sparse linear contextual bandits, conditional IDS suffers Q(Vnds) Bayesian regret lower
bound. Contextual IDS can achieve O(min{Vnds, sn?/3}) Bayesian regret upper bound for
any sparse prior. Here, d is the feature dimension and s is the sparsity.

In the data-poor regime where d > sn'/3, contextual IDS achieves better regret bound than
conditional IDS.
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Thanks!
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