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• Loss re-weighting
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In this work:
Extend “Oversampling” using PURE-NOISE IMAGES 

è SOTA results in Imbalanced classification

Overfit minor classes
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Why Does this Help? 

Additive Noise Pure NoiseOriginal Image ColorGeometric
• Augmentations are in close vicinity to the original images 

• Teaches to expect uncertainty in minor-classes at test-time.
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Results

State of The Art:
• CIFAR-10-LT
• CIFAR-100-LT
• ImageNet-LT
• Places-LT
• CelebA-5

Top-1 Test Accuracy
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