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Extend “Oversampling” using PURE-NOISE IMAGES
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Our Approach
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Our Approach

Oversampled images + Pure Noise Images == Qriginal Imbalanced Dataset
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Why Does this Help?
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Why Does this Help?

 Augmentations are in close vicinity to the original images

Original Image Geometric Color Additive Noise

* Teaches to expect uncertainty in minor-classes at test-time.
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Distribution shift — Natural Vs. Noise
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Distribution Aware Routing BN (DAR-BN)
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Top-1 Test Accuracy

State of The Art: Methods ImageNet-L'T
* CIFAR-10-LT ERM 11
* CIFAR-100-LT Oversampling 49.0
* ImageNet-LT BALMS 52.1
* Places-LT i’f*]iis 23(7)
1S .
* CelebA-5 OPeN 55.1




Balanced Classification
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Balanced Classification

Classl = Class2 = Class3

Method CIFAR-10 CIFAR-100
Baseline 94.62 74.96
AutoAugment? +1.49 +4.88
AutoAugment + Ours +2.38 +6.35

1 [Cubuk et al., 2019]
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