Scaling Structured Inference with
Randomization

Yao Fui John P. Cunningham% Mirella Lapata1

1University of Edinburgh *Columbia University

Review: classical graphical models for structured prediction

Graph Model Inference
Chains HMMs/ CRFs Forward-backward
Hypertrees PCFGs/ TreeCRFs Inside-outside

General Exponential

Family General sum-product

General graph

Very successful, but computation problem (on GPUs)
when scaling to large state space

Computation problem with very many labels

HMM / Linear-chain CRF Forward-Backward time/ space

O(LN?)

PCFG / TreeCRF Inside-Outside time/ space:

O(L*N?)

Goal: to scale structured prediction models to large
set of labels on GPUs

Challenges 1n scaling and previous efforts

Different Graphs Structures
HMMs / PCFGs / Semi-Markov / General Graphs ...

Requirements of Existing Methods for scaling

Sparsity / Pre-clustering / Heuristics ...

Restrictions from Automatic Differentiation

All computation should be differentiable

Solution: Randomized Dynamic Programming

Our method

Different Graphs Structures

We handle them all

Requirements of Existing Methods

We have no pre-assumptions

Restrictions from Automatic Differentiation

Our method 1s fully compatible with AD
Thus can be seamlessly integrated with neural networks

A randomization solution

Our method: randomized sum-product

For each DP step, K1

Weight at node = sum of most probable states combinations
randomly sampled states from the rest

K2

Computation reduction: K1 + K2 << N

Applying randomized sum-product to chains and trees

HMMs / Linear-chain CRFs PCFGs / TreeCRFs
Randomized Forward Randomized Inside
&t—l > &t

ji fii

.S‘x ‘ _ &(i9 m?)) a(m +]‘9]9

.~
~
~
..
~

Bl TopK summand Bl Sampled summand Dropped summand
Bm Gap to oracle @ TopK state @ Sampled state

More details 1in paper

Variance Reduction with Importance Sampling and Rao-
Blackwellization

RDP for entropy and sampling

Performance

Linear-chain Log Partition Hypertree Log Partition Linear-chain Entropy
N = 2000 D I L D I L D I L
TorPK 20% N 3.874 1.015 0.162 36.127 27.435 21.78 443.7 84.35 8.011
TorPK 50% N 0.990 0.251 0.031 2.842 2.404 2.047 131.8 22,100 1.816

RDP 1% N (ours) 0.146 0.066 0.076 26.331 37.669 48.863 5.925 1.989 0.691
RDP 10%N (ours) 0.067 0.033 0.055 1.193 1.530 1.384 2.116 1.298 0.316
RDP 20% N (ours) 0.046 0.020 0.026 0445 0544 0.599 1.326 0.730 0.207

N = 10000 D I L D I L D I L
TorPK 20% N 6.395 6.995 6.381 78.632 63.762 43,556 22736 17197 14191
ToPK 50% N 2.134 2.013 1.647 35.929 26.677 17.099 85.063 59.877 46.853

RDP1%N (ours) 0.078 0.616 0.734 3.376 5.012 7.256 6450 6.379 4.150
RDP 10%N (ours) 0.024 0.031 0.024 0.299 0447 0576 0.513 1.539 0.275
RDP 20%N (ours) 0.004 0.003 0.003 0.148 0246 0.294 0.144 0.080 0.068

Applicable to

e different structures: chains and trees

e different inference: log partition function / entropy
Performance

 Smaller mean square error than baseline topK summation
e Memory requirement as small as 1% of full states N

More experiment details 1in paper

Bias-Variance Decomposition

Integrating with neural networks

Conclusion

Using randomization to approximate sum-product dynamic
programming inference

RDP has Advantages 1n

(1). Memory saving and statistically principled bias-variance
control

(2). Compatibility to a wide range of models and inference,
as well as automatic differentiation

We hope our work would open new possibilities 1n large-
scale differentiable structured predictions

Thank you!

