£

MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for
Efficient Object Detection

Zhenhong Sun“! Ming Lin*! Xiuyu Sun! Zhiyu Tan! HaoLi' Rong Jin'

Zhenhong Sun

Algorithm Engineer
DAMO Academy, Alibaba Group

Contact us by DingTalk Contact us by WeChat



Outline

v'"Motivation

v'Maximum Entropy Principle
v'Single-scale Entropy for Deep Networks
v'"Multi-scale Entropy for Object Detection
v'Evolutionary Algorithm for MAE-DET
v'Experimental Results

v"Conclusion



Alibaba Group

Motivation -- Backbone of Object Detection Pia e

Backbone  ==—» Neck =—» Head —> 

Input image Predict label and bbox

v'The performance of object detection network heavily depends on the feature extraction backbone.
v"SOTA detection backbones are designed manually by human experts, migrated from classification.

v Since backbone consumes more than half of the overall inference cost, it is critical to optimize the

backbone for better speed-accuracy trade-off on different hardware platforms.



Motivation -- Two Challenges for Object Detection £l

v"Maximum Entropy Principle can indicate the expressivity of a network.

o Regard a detection network as an information processing system, its expressivity 1s

maximized when its entropy achieves maximum under the given inference budgets.

o The maximum expressivity represents a better feature extractor for object detection.

v"Two challenges to apply the entropy to Traning-free detection NAS.

o How to estimate the entropy of a deep network?

o How to efficiently extract deep features for objects of different scales?



Maximum Entropy Principle -- Expressivity £l

v"Continuous State Space of Deep Networks

o Deep network F( + ): RY = R maps an input image x € R9 to its label y € R.
oS ={h(v),h(e):VYv €V, e € £} defines the continuous state space of the network F .
o H(S,,) measures the feature representation power, representing the expressivity.

o H(S,) measures the network parameters, representing model complexity.

v'Gaussian Entropy Upper Bound

o Theorem: For any continuous distribution P(x) of mean u and variance o2, its

differential entropy is maximized when IP(x) is a Gaussian distribution NV (u, 62).



Maximum Entropy Principle -- Expressivity £l

v'Entropy of Gaussian Distribution

o Suppose x 1s sampled from Gaussian distribution N (u, 62). Then the differential

entropy of X 1s given by
1 1
H*(x) = Elog(Zn) + 5 + H(x) H(x) :=log(o).

v"Vanilla Network Search Space

o A vanilla network 1s stacked by multiple convolutional layers, followed by RELU

activations with bias set to zero:

xt = p(ht), h=wltsxx"11=1,..D.



Single-scale Entropy for Deep Networks

-1

i} A MES]
Conv ] Conv
C e e —»
0
x"~N(0,1) ﬁ Scale the feature map

ol—=1 l

X x (oo SRR
Conv ] ;: ol X_ :_> cor ——Pp
W~V (0,1) | NN XSO 2D

- =

x°~N'(0,1) @
D

H(F) = %log (Var(RP)) + > log(r")
=1

v Parameters are initialized by the standard Gaussian distribution.

H(F) = %log(Var(hD)) |
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v"Randomly generate an image input filled with the standard Gaussian noise.
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v Perform forward inference to calculate the Gaussian upper bound entropy of the network.



Multi-scale Entropy for Object Detection £2 Alibaba Group

3x3, 256

C7/128 P7 === v"Multi-scale features C at different
12
C6/64 Backbone Pomt= resolutions for Detection.
C5/32 H(C5) sl cE .
T— — ea .
- v'FPN neck fuses C into cross-stage
1x1,256 P4
H(C4 *— : : e
C4/16 H(C4) rz features P to exchange the Info.
1x1,256  P3
C3/8 H(C3) =5 == : = . :
v'C5 is more important (up and down).
FPN Head
C2/4
cin T v'"Weights o store the multi-scale entropy
Input Blocks  UpSample prior to balance the expressivity.

Z(F) = 0, H(C3) + a, H(C4) + asH(C5)



Multi-scale Entropy for Object Detection
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v Explore different combinations of o and correlation analysis.

va=(0,0,1, 1, 6)is good enough for the FPN structure.
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Evolutionary Algorithm for MAE-DET E 2P R0

Structure £

C5
x° .; v'Evolutionary Algorithm

o Small initial network

P e e o e e e e e e e = e =

Coarse mutation Fine mutation

o Stacked ResNet or MBV?2 blocks

| o Fixed maximum length

width o Coarse2Fine mutation

kernel width

o Maintain the population
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Experimental Results -- Better ResNet-like Backbones 2 o
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v’ Better than ResNet-series backbone under three common frameworks.
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Experimental Results -- Ablation Study
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Table 4. Comparison of different evolutionary searching strategies in MAE-DET. C-to-F: Coarse-to-Fine. Zen-Score is the proxy in

Zen-NAS (Lin et al., 2021).

ImageNet-1K

COCO with YOLOF

COCO with FCOS

Score Mutation | FLOPs Params TOP-1% | AP,.. APs AP,, AP, | AP,,n, APs AP, AP,
ResNet-50 None 4.1G 23.5M 78.0 37.8 19.1 42.1 533 38.0 23 40.8 47.6
Zen-Score Coarse 4.4G 67.9M 78.9 38.9 19.0 43.2 56.0 38.1 232 40.5 48.1

Single-scale = Coarse 44G  60.1M 78.7 39.8 19.9 44 4 56.5 38.8 23.1 41.4 50.1
Multi-scale Coarse 4.3G 29.4M 78.9 40.1 211 44.5 55.9 394 23.7 42.3 50.0
Multi-scale C-to-F 4.4G 25.8M 79.1 40.3 20.8 44.7 56.4 40.0 24.5 42.6 50.6

v Single-scale model has better performance than ResNet-50 on ImageNet, YOLOF and FCOS.

v Single-scale model has better performance than Zen-score on YOLOF and FCOS.

v Multi-scale with C-to-F strategy get the best performance on all tasks.
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Experimental Results -- SOTA NAS Methods EL2 ey P

Table 2. Comparisons with SOTA NAS methods for object detection. FLOPs are counted for full detector.

Training-  Search Cost FLOPs Pretrain/ COCO
vigtned free GPU Days Regroh-Cart All Scratch Epochs (AP¢est)
DetNAS X 68 backbone 289G  Pretrain 24 43.4
SP-NAS X 26 backbone 655G  Pretrain 24 47.4
SpineNet X 100x TPUv3t backbone+FPN | 524G  Scratch 350 48.1

MAE-DET v 0.6 backbone | 279G  Scratch 73 48.0

Table 3. Comparisons between MAE-DET, DetNAS (Chen et al., 2019b) and SpineNet (Du et al., 2020) under the same training settings.
All backbones are trained under GFLV?2 head with 6X training epochs. FLOPs and parameters are counted for full detector.

Backbone Search Part Search Space | FLOPs Params | AP,,; APs AP, AP, nF\l;?()O

DetNAS-3.8G backbone SamieNetV2 ‘ 205G 35.5M | 464 293 59.0 ‘
+Xception

SpineNet-96  backbone+FPN ResNet Block | 216G 413M | 466 298 502 589 | 199

MAE-DET-M backbone ResNet Block| 215G 349M | 468 29.9 50.4 60.0 | 222

v  MAE-DET achieves better mAP than DetNAS and SP-NAS while being 50 ~ 100 times faster in search.

v  MAE-DET requires fewer parameters and has a faster inference speed on V100 when achieving competitive

performance over DetNAS and SpineNet on COCO.
13



Experimental Results -- Transfer to Other Tasks EL wmtenm P

Table 5. Transferability of MAE-DET in multiple object detection and instance segmentation tasks. FLOPs reported are counted for full

detector.
Task Dataset | Head Backbone Resolution  Epochs FLOPs | AP, APV’"‘;IlSk
VOC ResNet-50 1000 x 600 12 120G 76.8 -
Object FCOS MAE-DET-M 1000 x 600 12 123G 80.9 -
Detection Cit ResNet-50 2048 x 1024 64 411G 37.0 -
flescapes MAE-DET-M 2048 x 1024 64 426G | 38.1 -
ResNet-50 1333 x 800 73 375G 432 39.2
MASK | MAE-DET-M 1333 x 800 13 379G 44.5 40.3
Instance COCO R-CNN | ResNet-507 640 x 640 350 228G 42.7 37.8
Segmentation SpineNet-49t 640 x 640 350 216G 429 38.1
SCNet ResNet-50 1333 x 800 73 671G 46.3 41.6
MAE-DET-M 1333 x 800 73 675G 47.1 42.3

7: Numbers are cited from SpineNet paper (Du et al., 2020).

v While transferring to VOC and Cityscapes dataset, MAE-DET achieves better performanc than ResNet-50.

v While transferring to COCO instance segmentation, MAE-DET still works well.

14



Conclusion ££2 Alibaba Group

v We revisit the Maximum Entropy Principle in zero-shot object detection NAS, and deliver superior

performance without bells and whistles.

v"Using less than one GPU day and 2GB memory, MAE-DET achieves competitive performance on
COCO with at least 50x times faster.

v MAE-DET is the first zero-shot NAS method for object detection with SOTA performance under

multiple detection frameworks.

15



Contact us by DingTalk Contact us by WeChat

Thank you for your listening



