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Multi-Agent Reinforcement Learning




General-Sum Games




Opponent Shaping & LOLA

LOLA: AO, =—aV, (L1 (6’1,6’2 + E )) where@ = — aV2L2

e LOLA finds Tit-for-Tat in the lterated Prisoner’s Dilemma.

| OLA is inconsistent: it assumes that the opponent is a Naive Learner.
 LOLA does not find Stable Fixed Points (SFPs).

o Stable Fixed Points are a popular solution concept.

1 Foerster et al., 2017



Contributions



Higher-Order LOLA (HOLA) & iLOLA

mtti= = aV, (L1 (0,0,+ 1))
* HOLAN: where h1_1 = hz_l = ()

W= = aVy (L2 (60, + ), 0,) )

h’n
: . 1 _
e iLOLA := Jlm ( hg’ if HOLAn = (hf‘, hg‘) converges pointwise as 7 — o0



Consistency

d

» Consistency: Any update functions f; : |
consistent if they satisfy:

f1(0,,6,) = —aV, (Ll (6’1, 0, + 1 (6. 92)))

£ (0,.0,) = —aV, (L2 (91 +£,(6,,0,). 92))

— |

“and f, : |

* Proposition: ILOLA is consistent under mutual opponent shaping

d dlc



Competitive Gradient Descent # ILOLA

The authors of CGD (2019) claim that:

1. the higher-order series-expansion [of CGD]
would recover higher-order LOLA” (page 4)

2. LCGD [Linearized CGD] coincides with first-
order LOLA” (page 6)

 Proposition: |CGD does not
coincide with iLOLA

and does not solve the
iInconsistency problem

1 Schéafer et al., 2019

What I think that they think that I think ... that they do: Another game-theoretic interpretation
of CGD follows from the observation that its update rule can be written as

(Aa:) _ ( d nD2, f) - (vx f) @
Ay nD;.g 1d Vyg)"

Applying the expansion Apax(A) < 1 = (Id —A)_1 = limy_ye0 Zszo AF to the above equation,
we observe that the first partial sum (/N = 0) corresponds to the optimal strategy if the other player’s
strategy stays constant (GDA). The second partial sum (/N = 1) corresponds to the optimal strategy
if the other player thinks that the other player’s strategy stays constant (LCGD, see Figure 1). The
third partial sum (/N = 2) corresponds to the optimal strategy if the other player thinks that the other
player thinks that the other player’s strategy stays constant, and so forth, until the Nash equilibrium is
recovered in the limit. For small enough 7, we could use the above series expansion to solve for
(Az, Ay), which is known as Richardson iteration and would recover high order LOLA (Foerster

et al., 2018). However, expressing it as a matrix inverse will allow us to use optimal Krylov subspace
methods to obtain far more accurate solutions with fewer gradient evaluations.

Saaw weme s sssawees S eeeeeessevaw wes ma Yase

Daskalakis et al. (2017) proposed to modify GDA as

Az = — (Vo f(@k,y) + (Vo f @k, k) — Ve f (Th—1,Yk-1)))
Ay = — (Vyg(zk, yk) + (Vyg(zk, yk) — Vyg(Tr-1,Yk-1))) ,

which we will refer to as optimistic gradient descent ascent (OGDA). By interpreting the differences
appearing in the update rule as finite difference approximations to Hessian vector products, we
see that (to leading order) OGDA corresponds to yet another second order correction of GDA (see
Figure 1). It will also be instructive to compare the algorithms to linearized competitive gradient
descent (LCGD), which is obtained by skipping the matrix inverse in CGD (which corresponds to
taking only the leading order term in the limit nDﬁy f — 0) and also coincides with first order LOLA
(Foerster et al., 2018). As illustrated in Figure 1, these six algorithms amount to different subsets of
the following four terms.



COLA: Consistent Learning with Opponent-Learning Awareness

* Naive Solution to consistency: lteratively compute higher orders of LOLA until
convergence.

 May diverge and requires arbitrarily high derivatives: expensive!

» We propose COLA: Learn f; and f, using neural networks

C (451,452, 6’19‘92) = || +aV, (Ll (6’1,92 "‘fz)) ||

& (Cbp b5, 0, 92) =

£, + aVz(Lz (6, +f1,92)) ||



COLA: Theoretical Results

- Proposition 4.5. Solutions to th st ti
COLA’S SOIUthnS P olutions to the consistency equations are

not unique, even when restricted to linear solutions; more

are not necessari Iy precisely, there exist several linear consistent solutions to
un i q ue the Tandem game.

COnSiStenCy does Proposition 46 Consu.rtency does. not imply preservation
of SFPs: there is a consistent solution to the Tandem game

not lmp'Y with o = 1 that fails to preserve any SFP. Moreover, for

preservation of any o > 0, there are no linear consistent solutions to the
SFPs Tandem game that preserve more than one SFP.

Proposition 4.7. For any non-zero initial parameters and
CO L A is more any o > 1, LOLA and SOS have divergent iterates in the
Hamiltonian game. By contrast, any linear solution to the
consistency equations converges to the origin for any initial
parameters and any look-ahead rate o > 0; moreover, the
speed of convergence strictly increases with a.

robust than LOLA




Experiments



COLA’s solutions

COLA’S CO“SiStency are not necessarily

unique

COLA finds consistent update functions even when HOLA diverges.
COLA’s updates are similar to iLOLA when HOLA converges.

COLA tends to find similar solutions over different runs (despite the
theoretical result)

o LOLA HOLA3 HOLA®6 COLA o LOLA HOLA3 HOLAG6
1.0 128.0 512 131072  3e-14+42e-15 1.0 0.944-0.04 0.9440.04 0.9440.04 Coar L
: : ame @LR Cosine Sim
0.5 12.81 14.05 12.35 2e-14+5e-15 0.5 0.884+0.12 0.884+0.12 0.08+0.13 MP@10 0.97 £ 0.01
0.3 2.61 2.05 0.66 4e-14+3e-15 0.3 0.924+0.01 0.914+0.01 0.80+0.01 MP@0.5 0.99 + 0.01
0.1 0.08 Oe-3 2e-6 6e-141+9e-15 0.1 0.95+0.01 0.99+0.01 0.9940.01 Tandem@0.1 | 1.00 & 0.00
0.01 | 1e-5 2e-8 4e-14 le-14+4e-14 0.01 | 0.99+0.01 1.00£0.00 1.00+0.00 Tandem@1.0 | 0.98 £ 0.01
Table 1: Consistency Loss Table 2: Similarity Table 3: Self-

on Tandem Scores on Tandem Similarity Scores



Consistency does
not imply
preservation of SFPs

Tandem Game

L'(x,y) = (x +y)* — 2x
L*(x,y) = (x +y)* — 2y

Tandem
e COLA and HOLA converge to similar Y comor oo e ceood
solutions

1.0 -

0.5 1

0.0- /

—0.51

e COLA does not recover SFP

 CGD converges to a different solution
than COLA and HOLAS

Average Loss

0 20 40 60 80 100 120 140

Learning Step



CGD does not coincide
with ILOLA and does not

Iterated Prisoner’s Dilemma

solve the inconsistency
problem

—eo— COLA:1.0 —4— HOLA4:1.0 —a— S50S:1.0

Table 1. Payoff Matrix for the Prisoner’s Dilemma o
C D é 1.75
C[(¢L-D) | (30
g,
D (O, '3) ('23 '2) - w
. . . Learning Step
» COLA finds prosocial solution —
» COLA's policy is similar to Tit- gl
for-Tat 5 :
« CGD does not find prosocial g
solution 2 y

P(cooperation|state) agentl



COLA is more

Matching Pennies robust than LOLA

MatchingPennies

0.4+

—eo— COLA:0.5 —4— LOLA:0.5 —m— (CGD:0.5
0.34 ¥ COLA:10.0 —~— HOLA4:0.5 —— S50S:0.5
0.2

Table 6. Payoff Matrix for the Matching Pennies game.
Head Tail

Head | (+1,-1) (-1, +1)
Tail -1,+1) (+1,-1)

* COLA converges robustly
and fast to a wide range o o % &0 %9

Learning Step

of hyperparameter values COLA on P OLAG o NP

Average Loss
o
o
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Ultimatum Game T OrPER voo NWVOURE NOT 7 Al CHANCE.

EXACTLY NOTHING.

Ly = - <5Pfair + 3 (1 — DPfair )Paccept )

L, = - <5Pfair + 2 (1 — Pfair )Paccept )

» Player 1 has access to 10$

Ultimatum

—e— COLA:5.0 —&— HOLA4:5.0 —+— CGD:5.0

e Option 1: Split money 50/50 Ol o COLABO + HOLAGSO = SOS5.0

—+— LOLA:5.0 CGD:5.0 —m— S0S:5.0
| —— LOLA:5.0

e Option 2: Split money 80/20

Average Loss
A

* Player 2 can accept or decline

® COLA is the only algorithm consistently -

COnveI’ging tO the fall’ SO/UtiOI’) 0 100 200 300 400 500
Learning Step



onclusion

* Corrected a claim made in prior work

* |LOLA solves part of the consistency
problem of LOLA

 Even with consistency, opponent
shaping does not preserve SFPs

e We introduced COLA

« COLA tends to find prosocial solutions

COLA: C Learning with Opp Learning A
A. Nonconvergence of HOLA in the Tandem Game
In the f
shows |
Propos
COLA: C Learning with Opp Learning Awareness
To that end T N -
and let RHS of Equ
look-al
Proof. COLA: Consistent Learning with Opponent-Learning Awareness
forany 0. N fori=1,2.
In the folloy
. W
for i = of W that th °ﬁ’h°“ ha:;
i Definition C.
The au on showing
For arbitrar, COLA: Consistent Learning with Opp Learning A
to show tha
fori— 0 dNCF):!, let b d LCGD # LOLA. Following Schiifer & Anandkumar (2019), LCGD is given by
efine
2 2
Definition C.. LOGD = —a (Yol —aDe /Yy _ _ (I~ —aDif V1f> = —a(l-aH
Vy9 - aD,gV.f ~aDZg 1 )\vyg) = et
while Taylor
for any
Finally, we pr
:_)mposili;n’1 Any game wi COLA: Consistent Learning with Opponent-Learning Awareness
Hiin—yoo Vill which does not coincide with the LHS of the consistency equation (= f;) whenever parameters lie outside the measure-zero
Proof. The pi set {z +y + 2« = 0} C R2. Similarly for Taylor iLOLA, the RHS of the first consistency equation is
definition of ¢
In the last si exactly analog in the Tanden
02 + 'hm”’ First, we shov
and lim,,_, clarity, it is CGD does n«
The d V2 Lt (61, functions, on COLA: Consistent Learning with Opponent-Learning Awareness
e e the sandwic completeness which does . . Lo . -
) et ] are solutions to the consistency equations in the Tandem game with o = 1. (See below for a generalization to any « > 0.)
Now we cai Following Sc set {z +y: For the first pair of functions, we have
B. Pr LCGD =L VAT M wd ) = -V e+ -2 — %) = O b+ 1) = £
To beg This coincic for the first consis
h™ = (
defined and converge CGD recoy
the space). A for the second. Fc COLA: Consi Learning with Opp Learning Awareness
In the last ste In particular, .
forall ( where in th theorem that 1 G. Proof of Proposition 4.7
To proy must also b It follows fron Also, highe for the first consis LOLA and SOS diverge. Assume (zo,yo) # 0 and o > 1. We prove the more general claim that p-LOLA diverges for
It follows b V. Since 6 wa whenever a < any 0 < p < 1 (where p may take a different value at each learning step), recalling that LOLA and SOS are both special
cases of p-LOLA (Letcher et al., 2019b). Indeed, the p-LOLA gradient update is given by
C. Infinit
. . for the second. T hl) 2 ( y+az(l+p) >
— = —a(l —aH,)¢ +pa“X = —a
fori In this Secti D. Proof of where L is similarly show th: (hz ( JE+p —z + ay(l+p)

define Taylc
result will t

To begin, as
Taylor LOL

‘We begin by |
iLOLA. Itis s
and L? = (z -
by Balduzzi e
shaping term |

respectively. 1

with || H, || =

so gradients
Taylor) consi

For the exact

be written r

We prove b

forall n >

as required.

as required.

E. Proof

We prove tt

and

and we show that each update leads to increasing distance from the origin as follows:

are two distinct sc (@ + b1,y + ho)||* = 22 — 2za(y + az(1 + p)) + (¥ + o®2%(1 4 p)? + 2axy(1 +p)) +
cannot be 0 for « y* — 2ya(—z + ay(1 +p)) + o’ (z* + *y*(1 + p)* — 2azy(1 + p))
proof for o = 1 s = (2 49%) (1— a2(2p+ 1) + a*(1 +p)?)

> (@2 +y?) (1-a*+at) = Iz, »)]1* A

F. Proof of Pr -

where the inequality follows because the final expression in p has positive derivative for a > 1, hence minimized at p = 0.

Recall from the p: Now A > 1 for any o > 1, so we conclude by induction that

2 2
i [[(@n, yn) I” = A" [|(z0, yo) |” = o0
are consistent solt

none of these are as n — oo, provided (zo, yo) # 0, as required.

Consistent solution converges. We begin by showing that the following linear functions satisfy the consistency equations
We conclude that for the Hamiltonian game:

Moreover, we pro (f1> —a ( Y+ 20z ) .

the Tandem game f2) T 1422 \~z+2ay
Indeed, the RHS of the first consistency equation is
-z + 20y —a .
—aV, (J. <7,/ - 017'>) = 7(3/(1 +2a?) — a(-z + 20y) + az)
satisfying 1+ 2a? 1+ 2a2
—a (
=—D y+2¢xz) =f
for some z # 2’ € 1+ 2a?
the LHS yields b and similarly for the second equation.

To prove uniqueness, assume there is a second pair of linear update functions fi, f also satisfying consistency. Let
a,b,c € R such that f;(z,y) = az + by + c. Note that substituting the second equation into the first yields

Note that since f P _ . ey
equation, we obta filz,y) = —aV. (1‘ (z,y —aVy, (L (z+ fl(‘E=y)=y))))

=—a(y+a (204 file,y) + 29,12 0) + ¥V fi(0,9) + 29V fi(z,9)) )
Comparing x tern

Expanding the above and substituting the equation for f] , we obtain
which concludes 1 az + by + ¢ = —20’z(1 + a) — ay(1 + 2ab) — a’c
for all z, y € R, which yields (by comparing coefficients)
a(1+20?%) = —2a% 5 b(1+20%) = —a H c(1+a?) =0.
It follows that
fil@y) = gz (v +202) = filev),

proving the uniqueness of f;. Since f, is directly determined by f; via the second consistency equation, this concludes the
proof.



Thank you!



