In defense of dual-encoders for neural ranking

Aditya Krishna Menon

Sadeep Jayasumana

Ankit Singh Rawat

Seungyeon Kim

Sashank Reddi

Sanjiv Kumar

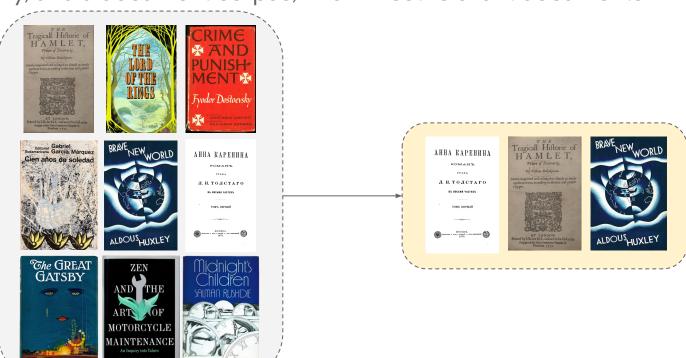
• Given a query, and a document corpus, find *k* most relevant documents

• Given a query, and a document corpus, find k most relevant documents

 \bullet Given a query, and a document corpus, find k most relevant documents



 \bullet Given a query, and a document corpus, find k most relevant documents



Typically, we first retrieve a set of candidate documents

Typically, we first retrieve a set of candidate documents

F-SCOTT-FITZGERALD

We then score and re-rank these documents to obtain the final results.

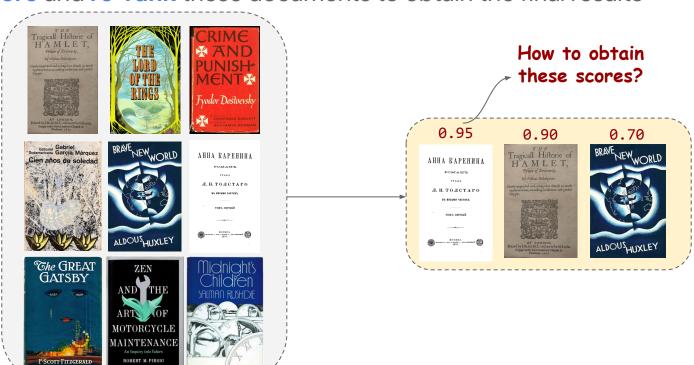
F-SCOTT-FITZGERALD

We then score and re-rank these documents to obtain the final results.

F-SCOTT-FITZGERALD

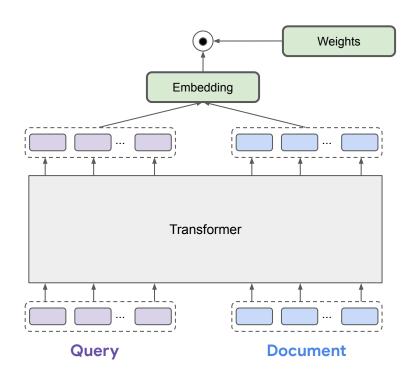
We then score and re-rank these documents to obtain the final results.

We then score and re-rank these documents to obtain the final results



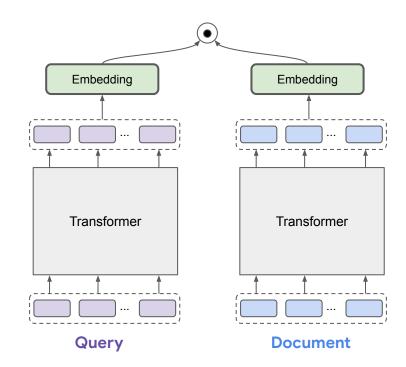
Neural ranking via transformer models

- Transformer (e.g., BERT) based neural models are a popular choice
- Cross-attention (CA) models apply a transformer to the concatenation of query and document
 - Score = Embed(Query, Doc)^T Weight
 - Joint query-document interaction



Neural ranking via transformer models

- Transformer (e.g., BERT) based neural models are a popular choice
- Dual-encoder (DE) models apply a transformer to the query and document separately
 - Score = Embed(Query)^T Embed(Doc)
 - Factorised query-document interaction



CA versus DE models

• Empirically, CA models outperform DE models for re-ranking

	MSMARCO re-rank		TREC DL19 re-rank		NQ re-rank	
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601

CA versus DE models

Empirically, CA models outperform DE models for re-ranking

	MSMARCO re-rank		TREC DL19 re-rank		NQ re-rank	
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601

What causes this performance gap?

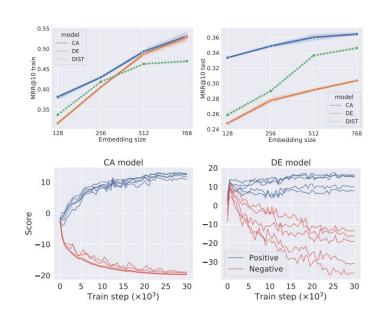
Summary of our work

Q: Why do CA models outperform DE models?

Poorer model capacity, or poorer model training?

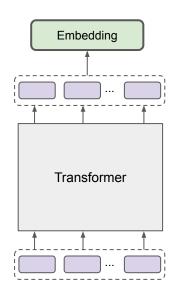
A: Model capacity may not be the cause; DE models exhibit a strong generalisation gap!

This can be alleviated by careful use of distillation



How good are DE models in theory?

• Can DE models fit any reasonable relevance function (in principle)?

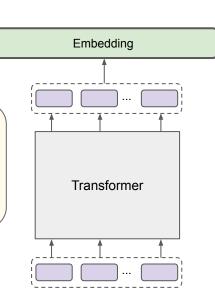


How good are DE models in theory?

Can DE models fit any reasonable relevance function (in principle)?

Yes, with sufficiently high embedding dimension!

Proposition. Under mild technical conditions, any continuous query-document score function s(q, d) can be approximated by some $Z(q)^T W(d)$, where Z(q), W(d) have at most countably infinite dimension.



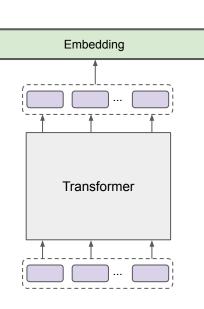
How good are DE models in theory?

Can DE models fit any reasonable relevance function (in principle)?

Yes, with sufficiently high embedding dimension!

Proposition. Under mild technical conditions, any continuous query-document score function s(q, d) can be approximated by some $Z(q)^T W(d)$, where Z(q), W(d) have at most countably infinite dimension.

Do we see this in practice?



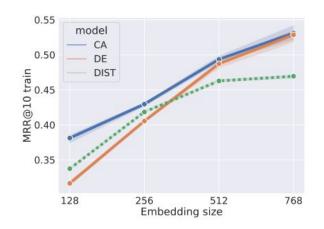
How good are DE models in practice?

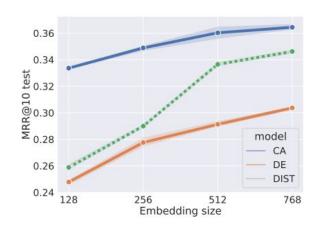
With large embedding size, DE models work well on training set!



How good are DE models in practice?

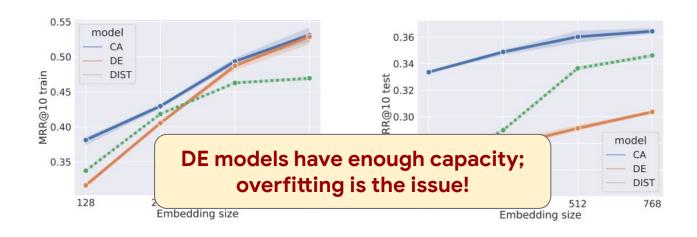
- With large embedding size, DE models work well on training set!
- However, there is a significant generalisation gap on the test set!





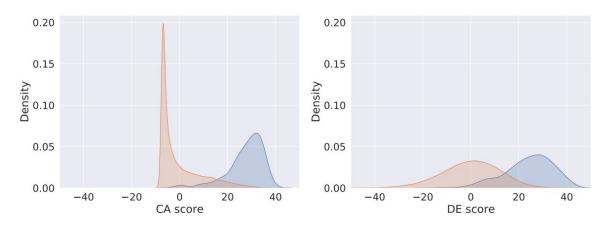
How good are DE models in practice?

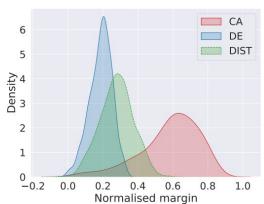
- With large embedding size, DE models work well on training set!
- However, there is a significant generalisation gap on the test set!



Why is there a generalisation gap?

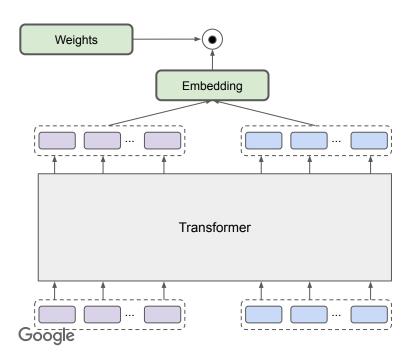
DE models yield poorer margins

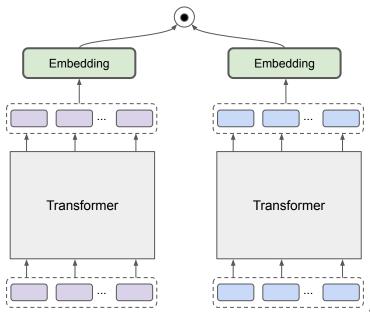




How do we mitigate the generalisation gap?

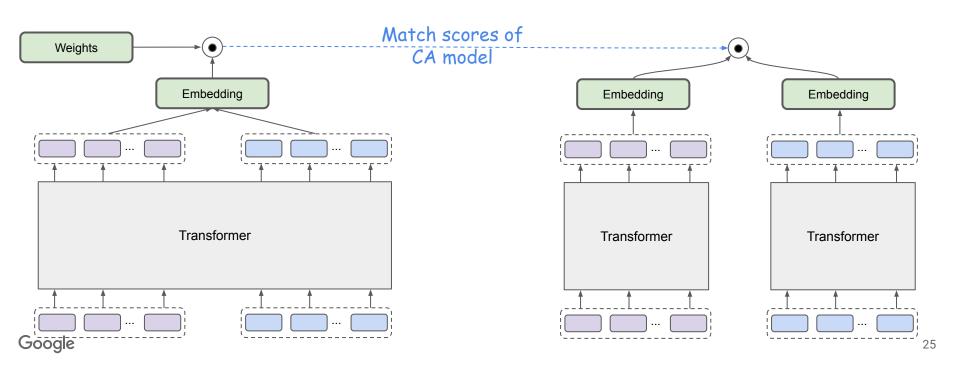
We distill predictions from a CA to DE model





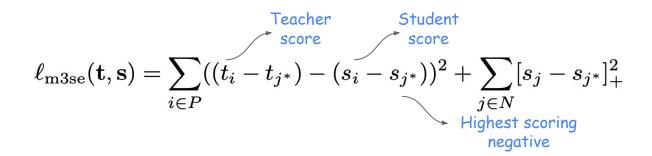
How do we mitigate the generalisation gap?

We distill predictions from a CA to DE model



Distillation via multi-margin MSE (M3SE)

- Generalises margin MSE loss of (Hofstatter et al., '20)
- Encourages matching teacher margin



Empirical results

• Distillation can help mitigate the generalisation gap!

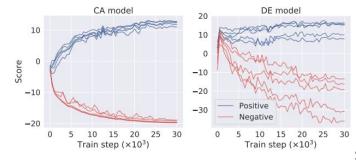
	MSMA	RCO re-rank	TREC I	L19 re-rank	NQ re	e-rank	
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG	
One-hot models							
BM25 (Robertson & Zaragoza, 2009)	0.194^{\dagger}	0.241^{\dagger}	0.689^{\dagger}	0.501^{\dagger}		_	
ANCE (Xiong et al., 2021)	_	_		_	0.677^{\dagger}	_	_
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673	
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601	
Distilled dual-encoders							
MSE (Hofstätter et al., 2020a)	0.289	0.343	0.781	0.693	0.659	0.591	
Margin MSE (Hofstätter et al., 2020a)	0.334	0.392	0.867	0.718	0.673	0.594	
RankDistil-B (Reddi et al., 2021)	0.249	0.301	0.852	0.708	0.649	0.561	
Softmax CE (Equation 1)	0.346	0.405	0.846	0.726	0.682	0.607	
M ³ SE (Equation 4)	0.349	0.406	0.852	0.714	0.699	0.625	

Empirical results

- More results in paper, including:
 - Use of ColBERT model as teacher
 - Insufficiency of alternate regularisation strategies
 - Noisy score updates of DE versus CA models

	Scoring function			
Teacher	Dot	ColBERT		
One-hot	0.310	0.356		
Dot	0.316	0.351		
ColBERT	0.334	0.368		
CA	0.334	0.376		

Strategy	Train MRR@10	Test MRR@10
Baseline DE	0.619	0.310
Increased embedding dropout	0.588	0.299
Token dropout	0.572	0.291
Masked language loss	0.548	0.299
Focal loss	0.546	0.307



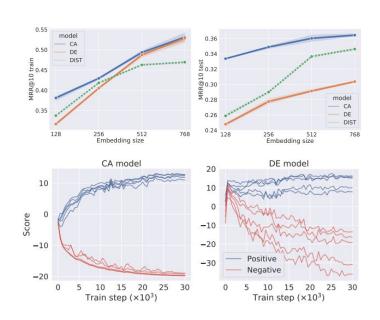
Summary of our work

Q: Why do CA models outperform DE models?

Poorer model capacity, or poorer model training?

A: Model capacity may not be the cause; DE models exhibit a strong generalisation gap!

This can be alleviated by careful use of distillation



See paper for more!