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Representations of High Dimensional Point Clouds

Common approach: manifold learning — representing the underlying
manifold of the data.
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Comparing the Representations
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Accounting for the symmetric positive definiteness of W,, we use the
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Comparing Unaligned Representations

Accounting for the symmetric positive definiteness of W,, we use the

Log-Euclidean metric (Arsigny et al., 2006).

Define a pseudo-metric by lower bounding the Log-Kuclidean metric:
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Additional Applications

Geometric shape comparison
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Geometric shape comparison

NN layer embedding analysis
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