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Variational inference
Goal: Given access to a proportional π̄ ∝ π, approximate π ≈ q

Example: Bayesian inference, π(θ) = p(θ | x) and π̄(θ) = p(x, θ)
Variational inference: maxq∈Q ELBO(q, π̄) where

−KL(q, π) ∝ ELBO(q, π̄) =
∫

q(x) log
π̄(x)
q(x)

dx

≈ 1

n

n∑
i=1

log
π̄(xi)
q(xi)

, xi
i.i.d.∼ q

More expressive variational familyQ ⇒ better approximation quality
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Expressive variational families using flows

Let fθ be an invertible flow and pX(x) a probability density (the base distribution).
Consider variational familyQ = {qθ : θ ∈ Θ} where

qθ(y) = pX(f
−1
θ (y))

∣∣∣∣∣det df−1
θ (z)

dz

∣∣∣∣
z=y

∣∣∣∣∣ . (1)

Figure 1: From [15], flows can transform a Gaussian into complex pushforward distributions



Model Autoregressive transform Lipschitz when

NICE[3] zj + µj · 1k̸∈[j] µj Lipschitz

MAF[14] σjzj + (1− σj)µj σj bounded

IAF[12] zj · exp(λj) + µj λj bounded, µj Lipschitz

Real-NVP[4] exp(λj · 1k̸∈[j]) · zj + µj · 1k̸∈[j] λj bounded, µj Lipschitz

Glow[11] σj · zj + µj · 1k̸∈[j] σj bounded, µj Lipschitz

NAF[8] σ−1(w⊤ · σ(σjzj + µj)) Always (logistic mixture CDF)

NSF[5] zj1zj ̸∈[−B,B] + Mj(zj; z<j)1xj∈[−B,B] Always (linear outside [−B, B])

FFJORD[7] n/a (not autoregressive) Always (required for invertibility)

ResFlow[2] n/a (not autoregressive) Always (required for invertibility)

Table 1: Some recently developed invertible flows.



Fat-tailed variational inference
Research aims ([9], this work): What happens when π is fat-tailed? What about when
π is multivariate?
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Methods
Automatic Differentiation Variational Inference (ADVI, [13, 17]):
QADVI := {(fθ)∗µ}, where µ = Normal(0d, Id).
Tail Adaptive Flows (TAF, [9]):
QTAF := {(fθ)∗µν}, where µν =

∏d
i=1 StudentT(ν) with ν ∈ R+.

Anisotropic Tail-Adaptive Flows (ATAF, this work):
QATAF := {(fθ)∗µν}, where µν =

∏d
i=1 StudentT(νi) with ν ∈ Rd

+.



Sharpening prior univariate theory

Assumption
fθ is invertible, and both fθ and f−1

θ are L-Lipschitz continuous (e.g. Table 1).

Theorem
• fθ cannot make the tails of a fat-tailed distribution fatter (decrease tail parameter α).

• If in addition fθ is smooth with no critical points, then it cannot change the tail
parameter of a fat-tailed distribution.

• Light-tailed distributions remain light-tailed under polynomial flows [10].



Multivariate fat tails and tail anisotropy

Definition (Tail parameter function)
For random vector X, define αX(v) = − limx→∞ logP(⟨v, X⟩ ≥ x)/ log x when the
limit exists, and αX(v) = +∞ otherwise. X is tail-isotropic if αX(v) ≡ c < ∞ is
constant.
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Necessity of ATAF

Proposition (Pushforwards of tail-isotropic distributions)
Let µ be tail isotropic with non-integer parameter ν and suppose fθ satisfies Assumption 1.
Then (fθ)∗µ is tail isotropic with parameter ν .



Bayesian linear regression
σ2 ∼ Inv-Gamma(a0, b0)

β | σ2 ∼ N (0, σ2), y | X, β, σ ∼ N (Xβ, σ2),

The posterior is tail-anisotropic:
p(σ2, β = c | X, y) ∝ ρ(σ2) ∈ L1

αn
is fat-tailed (power-law)

p(σ2 = c, β | X, y) ∝ ρ(β | c) ∈ E2 is light-tailed (sub-Gaussian)
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Eight schools [16]

τ ∼ HalfCauchy(loc = 0, scale = 5)

µ ∼ N (0, 5), θ ∼ N (µ, τ), y ∼ N (θ, σ).

ELBO log p(y)

ADVI −72.13± 6.89 −53.25± 3.44

TAF −64.64± 4.88 −52.51± 4.41

ATAF −58.63± 4.75 −51.01± 3.71

NUTS n/a −47.78± 0.093



Financial [6] and actuarial [1] density modeling

Fama-French 5 Industry Daily CMS 2008-2010 DE-SynPUF

ADVI −5.018± 0.056 −1.883± 0.012

TAF −4.703± 0.023 −1.659± 0.004

ATAF −4.699± 0.024 −1.603± 0.034

Table 2: Log-likelihoods (higher is better,± standard errors).



Conclusions

• Flow-based VI can expressively model the bulks of complicated distributions …

• But modeling of tails is still limited by choice of base distribution!

• Prior work (TAF, [9]) considers univariate tails, and in this work:
– Prior univariate theory is refined to include α and closure results are sharpened
– A multivariate theory is proposed to quantify tail-anisotropy and prove ATAF’s necessity
– Experiments confirm ATAF’s improvements on real-world fat-tailed datasets
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