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Variational inference

Goal: Given access to a proportional T o< 7, approximate ™ ~ q
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Variational inference
Goal: Given access to a proportional T o< 7, approximate ™ ~ q

Example: Bayesian inference, 7(0) = p(6 | x) and 7(0) = p(x, )
Variational inference: max,c o ELBO(q, 7) where

—KL(g, ) ox ELBO(q, ) = /q(x) log Z((;())dx

1 (X i
~ > log ) g g
n= q(x)

More expressive variational family Q = better approximation quality
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Expressive variational families using flows

Let fp be an invertible flow and px(x) a probability density (the base distribution).
Consider variational family @ = {qy : 6 € O} where

o Po )

ao(y) = px(fy ' (v)) |det (1)

Figure 1: From [15], flows can transform a Gaussian into complex pushforward distributions
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NICE[3]
MAF[14]
IAF[12]
Real-NVP[4]
Glow[11]
NAF[8]
NSF[5]
FFJORDI[7]
ResFlow[2]
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Zi+ ;- Tigpp 1 Lipschitz

0jzi+ (1 — o)y 0; bounded
zi-exp(\) + A; bounded, g Lipschitz
exp()\j . ]lkem) “Zi+ - Ligy Aj bounded, g Lipschitz
aj - Zi+ - Lygy oj bounded, y; Lipschitz
o tw' - o(oz + 1)) Always (logistic mixture CDF)
71, g6 + M(z;2<)) 1 ci—s5  Always (linear outside [—B, B])
n/a (not autoregressive) Always (required for invertibility)
n/a (not autoregressive) Always (required for invertibility)

Table 1: Some recently developed invertible flows.




Fat-tailed variational inference

Research aims ([9], this work): What happens when 7 is fat-tailed? What about when
7 is multivariate?

Target

Normal(p = 0,62 = 1)
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Methods

Automatic Differentiation Variational Inference (ADVI, [13, 17]):
Qaovi = {(fo)«}, where o = Normal(0y, 1y).

Tail Adaptive Flows (TAF, [9]):

Orar = {(fo) i} Where i, = H7:1 StudentT(v) with v € R
Anisotropic Tail-Adaptive Flows (ATAF, this work):

Ontar = {(fo)xtto }, where p, = H;j:l StudentT(v;) with v € R‘i.
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Sharpening prior univariate theory

Assumption
fo is invertible, and both fg and f, Lare L-Lipschitz continuous (e.g. Table 1).

Theorem
* fp cannot make the tails of a fat-tailed distribution fatter (decrease tail parameter c).

« Ifin addlition fg is smooth with no critical points, then it cannot change the tail
parameter of a fat-tailed distribution.
« Light-tailed distributions remain light-tailed under polynomial flows [10].
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Multivariate fat tails and tail anisotropy

Definition (Tail parameter function)

For random vector X, define ax(v) = — lim,_, o, log P({v,X) > x)/logx when the
limit exists, and ay(v) = 4o otherwise. X is tail-isotropic if ay(v) = ¢ < oo is
constant.
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Necessity of ATAF

Proposition (Pushforwards of tail-isotropic distributions)

Let p be tail isotropic with non-integer parameter v and suppose fy satisfies Assumption 1.
Then (fy) . is tail isotropic with parameter v.
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Bayesian linear regression
o? ~ Inv-Gamma(ag, bo)
Blo® ~N(0,0%),  y|X B0 ~NKXB,0?),
The posterior is tail-anisotropic:
p(o?, 8 =c|Xy) x p(c?) € L isfat-tailed (power-law)
p(c? =c,B|Xy) x p(B|c) € E2is light-tailed (sub-Gaussian)
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Eight schools [16]

T ~ HalfCauchy(loc = 0, scale = 5)
p~N(0,5),  O~N(ur7), y~N(bo0).

ADVI —72.134+6.89 —53.25 + 3.44
TAF  —64.64+4.88  —52.51 +4.41

ATAF —58.63 +£4.75 —51.01+3.71

NUTS n/a —47.78 +0.093
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Financial [6] and actuarial [1] density modeling

ADVI —5.018 + 0.056 —1.883 £+ 0.012
TAF —4.703 +0.023 —1.659 £ 0.004
ATAF —4.699 + 0.024 —1.603 +0.034

Table 2: Log-likelihoods (higher is better, + standard errors).
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Conclusions

+ Flow-based VI can expressively model the bulks of complicated distributions ...
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Conclusions

+ Flow-based VI can expressively model the bulks of complicated distributions ...
+ But modeling of tails is still limited by choice of base distribution!

* Prior work (TAF, [9]) considers univariate tails, and in this work:
- Prior univariate theory is refined to include cv and closure results are sharpened
- A multivariate theory is proposed to quantify tail-anisotropy and prove ATAF's necessity
- Experiments confirm ATAF's improvements on real-world fat-tailed datasets
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