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Motivation

Horizontal Federated Learning

Feature space shared: images of
animals

Sample space not shared: each
party stores different individual
animals

Vertical Federated Learning

Sample space shared: individuals

Feature space not shared: medical
information, financial information,
vehicle accident reports.
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Message Passing in VFL

Local feature extractors/models

VFL shares embeddings: intermediate outputs from local models

Large communication overhead

Message compression
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Related Work

HFL works with compression (Stich et al., 2018; Wen et al., 2017;
Karimireddy et al., 2019).

Several works in VFL (Liu et al., 2019; Hu et al., 2019; Chen et al., 2020)

No work applies embedding compression in VFL
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Compressed VFL (C-VFL) Overview

Parties agree on mini-batch of
samples

Parties update local model
parameters for Q local iterations
using stochastic coordinate descent

To calculate model updates, parties
share:

Embeddings from each party for
mini-batch B
Server model parameters

At the start of each round, parties
share embeddings and server shares
prediction model parameters

Message compression applied to all
messages
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Convergence Results

Theorem

Under Assumptions 1-5, if ηr = η for all iterations and satisfies
ηr ≤ 1

16Qmax{L,maxm Lm} , then the average squared gradient over R
communication rounds of Algorithm 1 is bounded by:
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C-VFL converges at a rate of O
(

1√
T

)
T = R ·Q is the total number of local iterations

C-VFL can afford compression error without loss in convergence speed
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Experimental Setup

Compare no compression with three compression schemes:
Top-k Sparsification
Scalar Quantization
Vector Quantization

ModelNet10: 3D models with 12 camera views

4 parties, 3 views each

Parties train 2-layer CNN models

Server with one fully-connected layer
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Benefits of Compression in Test Accuracy

(a) ModelNet10 by epochs (b) ModelNet10 by cost

2 bits per embedding component

Slight decrease in accuracy plotted by epochs: iterations/batches

Significant improvement when plotted by communication cost
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Thank you!

Contact me at castit@rpi.edu


