# Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data

Timothy Castiglia<sup>1</sup>, Anirban Das<sup>1</sup>, Shiqiang Wang<sup>2</sup>, Stacy Patterson<sup>1</sup>

<sup>1</sup>Department of Computer Science, Rensselaer Polytechnic Institute

 $^2 \mbox{IBM}$  T.J. Watson Research Center, IBM Research

7/20/2022



- Horizontal Federated Learning
- Feature space shared: images of animals
- Sample space not shared: each party stores different individual animals



- Vertical Federated Learning
- Sample space shared: individuals
- Feature space not shared: medical information, financial information, vehicle accident reports.

### Message Passing in VFL



- Local feature extractors/models
- VFL shares embeddings: intermediate outputs from local models
- Large communication overhead
- Message compression

#### Related Work

- HFL works with compression (Stich et al., 2018; Wen et al., 2017; Karimireddy et al., 2019).
- Several works in VFL (Liu et al., 2019; Hu et al., 2019; Chen et al., 2020)
- No work applies embedding compression in VFL

#### Compressed VFL (C-VFL) Overview

- Parties agree on mini-batch of samples
- Parties update local model parameters for Q local iterations using stochastic coordinate descent
- To calculate model updates, parties share:
  - ullet Embeddings from each party for mini-batch  ${\cal B}$
  - Server model parameters
- At the start of each round, parties share embeddings and server shares prediction model parameters
- Message compression applied to all messages



#### Convergence Results

#### Theorem

Under Assumptions 1-5, if  $\eta^r = \eta$  for all iterations and satisfies  $\eta^r \leq \frac{1}{16Q\max\{L, \max_m L_m\}}$ , then the average squared gradient over R communication rounds of Algorithm 1 is bounded by:

$$\frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \left[ \|\nabla F(\Theta^r)\|^2 \right] \leq \frac{4 \left[ F(\Theta^0) - \mathbb{E} \left[ F(\Theta^T) \right] \right]}{\eta T} + 6\eta L \sum_{m=0}^{M} \frac{\sigma_m^2}{B} + \frac{92Q^2}{R} \sum_{m=0}^{M} H_m^2 G_m^2 \sum_{r=0}^{R-1} \sum_{j=0, j \neq m}^{M} \mathcal{E}_j^r.$$

- $\bullet$  C-VFL converges at a rate of  $O\left(\frac{1}{\sqrt{T}}\right)$ 
  - $\bullet \ T = R \cdot Q$  is the total number of local iterations
- C-VFL can afford compression error without loss in convergence speed

#### Experimental Setup



- Compare no compression with three compression schemes:
  - ullet Top-k Sparsification
  - Scalar Quantization
  - Vector Quantization
- ModelNet10: 3D models with 12 camera views
- 4 parties, 3 views each
- Parties train 2-layer CNN models
- Server with one fully-connected layer

## Benefits of Compression in Test Accuracy







(b) ModelNet10 by cost

- 2 bits per embedding component
- Slight decrease in accuracy plotted by epochs: iterations/batches
- Significant improvement when plotted by communication cost

# Thank you!

Contact me at castit@rpi.edu