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| Motivation
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@ Horizontal Federated Learning

o Feature space shared: images of
animals

@ Sample space not shared: each
party stores different individual
animals

~ Parameter
Server

Hospital Bank Insurance
D D D.

@ Vertical Federated Learning
@ Sample space shared: individuals

@ Feature space not shared: medical
information, financial information,
vehicle accident reports.



Message Passing in VFL
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@ Local feature extractors/models
@ VFL shares embeddings: intermediate outputs from local models
@ Large communication overhead

@ Message compression



| Related Work

o HFL works with compression (Stich et al., 2018; Wen et al., 2017;
Karimireddy et al., 2019).

@ Several works in VFL (Liu et al., 2019; Hu et al., 2019; Chen et al., 2020)

@ No work applies embedding compression in VFL



Compressed VFL (C-VFL) Overview
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o Parties agree on mini-batch of
samples

@ Parties update local model
parameters for @ local iterations

using stochastic coordinate descent oY g iy
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o To calculate model updates, parties ’ Server Model

share: I

° Er:nl:.)eddings from each party for Calha(6;22))
mini-batch 3

o Server model parameters Compressed \

Embeddings
@ At the start of each round, parties ~ y

share embeddings and server shares Ca (ha (635 33))
prediction model parameters
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@ Message compression applied to all
messages



Convergence Results

Under Assumptions 1-5, if n"" = n for all iterations and satisfies
n" < 60 max] leax o then the average squared gradient over R
communication rounds of Algorithm 1 is bounded by:
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o C-VFL converges at a rate of O (%)

o T = R - (Q is the total number of local iterations

@ C-VFL can afford compression error without loss in convergence speed



~ Experimental Setup
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3D shape model

rendered with 2D rendered
different virtual cameras images

@ Compare no compression with three compression schemes:

o Top-k Sparsification
o Scalar Quantization
o Vector Quantization

ModelNet10: 3D models with 12 camera views

4 parties, 3 views each

Parties train 2-layer CNN models

Server with one fully-connected layer
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Benefits of Compression in Test Accuracy

fos]
o

(=)}
o

Accuracy
Y
o

—— No Compression
~—— Scalar Quantize

20 —— Vector Quantize
—— Top-k
0
0 25 50 75 100
Epochs

(a) ModelNet10 by epochs

@ 2 bits per embedding component
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(b) ModelNet10 by cost

@ Slight decrease in accuracy plotted by epochs: iterations/batches

@ Significant improvement when plotted by communication cost




Thank you!

Contact me at castit@rpi.edu



