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Generative adversarial networks (GANs)
• GANs use a pair of neural networks to learn a probability distribution.

• Zero-sum game between discriminator and generator—“the players”.
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first-order HMM38. Although HMMs are powerful and a de facto 
golden standard for protein functional annotation39,40, when used 
for sequence generation, the first-order HMM did not recapitulate 
the sequence conservation present in the training data, as the posi-
tional entropy error (m.s.e.) of HMM-generated sequences com-
pared to natural ones exceeded the error with ProteinGAN by over 
21-fold (Fig. 1e and Supplementary Fig. 7). At conserved positions, 
ProteinGAN-generated sequences preserved key substrate-binding 
and catalytic residues (Fig. 1f). Further comparative analysis of 
generated and natural sequences showed that, even in highly 
variable sequence regions, the frequencies of individual amino 
acids were perfectly correlated (Pearson’s r = 0.96, P < 1 × 10−16; 
Supplementary Fig. 8). Moreover, for each individual sequence, 
ProteinGAN inferred the specific physicochemical amino-acid  

signatures present in the corresponding enzyme class. For example, 
despite the high sequence diversity among generated sequences, the  
fractions of hydrophobic, aromatic, charged and cysteine-containing 
residues were practically the same (Wilcoxon rank sum test, P > 0.05) 
as in natural ones. Apart from the differences in hydrophilic  
and polar uncharged residues (P = 7 × 10−5 and 1 × 10−28, respec-
tively), the network had learned the overall amino-acid composi-
tion corresponding to both the evolutionary and physicochemical 
constraints (Fig. 1e,g, Supplementary Table 1 and Supplementary 
Figs. 9 and 10).

Moving forward, we assessed whether ProteinGAN was able to 
learn the specific local positional order of amino acids across the 
full length of the MDH sequences. To investigate such local rela-
tionships, we calculated the amino-acid association measures for 
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Generative adversarial networks (GANs)
• GANs use a pair of neural networks to learn a probability distribution.

• Zero-sum game between discriminator and generator—“the players”.

• Game ends when the players reach consensus: “fake data” looks like the “real” data.
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first-order HMM38. Although HMMs are powerful and a de facto 
golden standard for protein functional annotation39,40, when used 
for sequence generation, the first-order HMM did not recapitulate 
the sequence conservation present in the training data, as the posi-
tional entropy error (m.s.e.) of HMM-generated sequences com-
pared to natural ones exceeded the error with ProteinGAN by over 
21-fold (Fig. 1e and Supplementary Fig. 7). At conserved positions, 
ProteinGAN-generated sequences preserved key substrate-binding 
and catalytic residues (Fig. 1f). Further comparative analysis of 
generated and natural sequences showed that, even in highly 
variable sequence regions, the frequencies of individual amino 
acids were perfectly correlated (Pearson’s r = 0.96, P < 1 × 10−16; 
Supplementary Fig. 8). Moreover, for each individual sequence, 
ProteinGAN inferred the specific physicochemical amino-acid  

signatures present in the corresponding enzyme class. For example, 
despite the high sequence diversity among generated sequences, the  
fractions of hydrophobic, aromatic, charged and cysteine-containing 
residues were practically the same (Wilcoxon rank sum test, P > 0.05) 
as in natural ones. Apart from the differences in hydrophilic  
and polar uncharged residues (P = 7 × 10−5 and 1 × 10−28, respec-
tively), the network had learned the overall amino-acid composi-
tion corresponding to both the evolutionary and physicochemical 
constraints (Fig. 1e,g, Supplementary Table 1 and Supplementary 
Figs. 9 and 10).

Moving forward, we assessed whether ProteinGAN was able to 
learn the specific local positional order of amino acids across the 
full length of the MDH sequences. To investigate such local rela-
tionships, we calculated the amino-acid association measures for 
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Structured target data & distribution Q

Q

equiprobable

Question: how to build embedded structure into GAN players (generators and 
discriminators) for data-efficient distribution learning?
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GAN is “probability distance” minimization

Mathematically, GANs can be formulated as minimizing some variational divergence, 
, between  and . “Distance” is determined by discriminators .DΓ(Q∥Pg) Q Pg γ ∈ Γ

• The original GAN [Goodfellow et al., 2014]: 


• Many other variational divergences: KL, f-divergences, Wasserstein, MMD, Sinkhorn...

min
g∈G

max
γ∈Γ

EQ[log γ] + EPg
[log(1 − γ)]

min
g∈G

DΓ(Q∥Pg) = min
g∈G

max
γ∈Γ

H(γ; Q, Pg)
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GAN with embedded structure

• Target distribution  is invariant under a group . 


• : rotation, translation, roto-reflection, permutation, etc.
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GAN with embedded structure

• Target distribution  is invariant under a group . 


• : rotation, translation, roto-reflection, permutation, etc.


• How to incorporate structure into  and ?

Q Σ

Σ

g γ

min
g∈G

DΓ(Q∥Pg) = min
g∈G

max
γ∈Γ

H(γ; Q, Pg), Q is Σ-invariant
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Our Theorem 1: “smarter” discriminator

Theorem: If the distributions  are -invariant, then


,

P, Q Σ

DΓ(Q∥P) = DΓinv
Σ (Q∥P)

• Structure information embedded in the “smarter” space  of -invariant discriminators


•  is much “smaller” than   efficient GAN optimization


•  serves as an unbiased regularization to prevent discriminator overfitting.

Γinv
Σ Σ

Γinv
Σ Γ ⟹

Γinv
Σ
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Theorem: If  is -invariant and  is -equivariant, the generated 
measure  is -invariant.

PZ Σ g : Z → X Σ
Pg Σ

• Structure information embedded in the "smarter" generator and noise source.



Our Theorem 2: “smarter” generator

Theorem: If  is -invariant and  is -equivariant, the generated 
measure  is -invariant.

PZ Σ g : Z → X Σ
Pg Σ

• Structure information embedded in the "smarter" generator and noise source.


• "Smart" generator and noise source prevents mode collapse.
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Two “smart” players
“Ignorant” 

players need lots of 
data, lots of time…

(the usual GANs) 

“Smart” players 
learn faster and better


(our GANs)

Players need to be 
“equally smart”: no 

weak links!



RotMNIST with 1% training samples
“Ignorant” players “Smart” players



Performance metrics on RotMNIST (FID)

A PREPRINT - MARCH 1, 2022

compared to the baseline CNN G&D and the prior approach ((I)Eqv G + Inv D); the out-performance is even more
pronounced when increasing the group size from ⌃ = C4 to C8. See Figure 5 below for randomly generated samples
by RA-GANs trained with 1% training data. More results are available in Appendix C.

(a) CNN G&D (b) Eqv G + CNN D, ⌃ = C4 (c) CNN G + Inv D, ⌃ = C4

(d) (I)Eqv G + Inv D, ⌃ = C4 (e) Eqv G + Inv D, ⌃ = C4 (f) Eqv G + Inv D, ⌃ = C8

Figure 5: Randomly generated digits by the RA-GANs trained on RotMNIST after 20K generator iterations with 1%
(600) training data. More images are available in Appendix C.
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6.4 ANHIR and LYSTO

Compared to RotMNIST, ResNet and its D4-equivariant counterpart are used instead of CNNs for G and D. All models
are trained for 40,000 generator iterations with a batch size of 32. Implementation details are available in Appendix D.
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Structure-preserving GANs

Table 4. The (min, median) of the FIDs over the course of training, averaged over three independent trials on the medical images, where
the plus sign “+” after the data set, e.g., ANHIR+, denotes the presence of data augmentation during training.

Loss Architecture ANHIR ANHIR+

RA
CNN G&D

(I)Eqv G + Inv D
Eqv G + Inv D

(186, 523)
(100, 142)
(78, 125)

(184, 503)
(88, 140)
(84, 118)

DL

2

CNN G&D
(I)Eqv G + Inv D
Eqv G + Inv D

(313, 485)
(120, 176)
(97, 157)

(347, 539)
(119, 177)
(90, 128)

Loss Architecture LYSTO LYSTO+

RA
CNN G&D

(I)Eqv G + Inv D
Eqv G + Inv D

(281, 340)
(218, 272)
(175, 238)

(250, 312)
(212, 271)
(181, 227)

DL

2

CNN G&D
(I)Eqv G + Inv D
Eqv G + Inv D

(289, 410)
(253, 343)
(205, 259)

(265, 376)
(244, 329)
(192, 259)

G. Implementation Details
G.1. Common experimental setup

All models are trained using the Adam optimizer (?) with �1 = 0.0 and �2 = 0.9 (?). Discriminators are updated twice
after each generator update. An exponential moving average across iterations of the generator weights with ↵ = 0.9999 is
used when sampling images (?).

G.2. RotMNIST

For RA-GAN, the training is stabilized by regularizing the discriminator � 2 � with a zero-centered gradient panelty (GP)
on the real distribution Q in the following form

R1 =
�1

2
Ex⇠Qkr�(x)k22. (69)

We set the GP weight �1 = 0.1 according to (?). For the DL

↵
-GAN, we use the one-sided GP as a soft constraint on the

Lipschitz constant

R2 = �2Ex⇠⇢g max{0, kr�(x)k2 � 1}, (70)

where ⇢g ⇠ TX + (1 � T )Y (with X ⇠ Pg, Y ⇠ Q, and T ⇠ Unif([0, 1]) all being independent.) The one-sided GP
weight is set to �2 = 10 according to (?). Unequal learning rates were set to ⌘G = 0.0001 and ⌘D = 0.0004 respectively.
The neural architectures for the generators and discriminators are displayed in Table 5 and Table 6.

G.3. ANHIR and LYSTO

Similar to RotMNIST, the GP weights are set to �1 = 0.1 for the RA-GAN in (69) and �2 = 10 for the DL

↵
-GAN in (70),

and we consider only the case ↵ = 2. The learning rates were set to ⌘G = 0.0001 and ⌘D = 0.0004 respectively. ResNets
instead of CNNs are used as baseline generators and discriminators, and the detailed architectural designs are specified in
Table 7 and Table 8.

G.4. Architectures


