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Summary of results

° Meta-RL carries out fast adaptation when agent faces a new environment

— meta-learning
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What we found in a nutshell

° Unbiased meta-gradient estimates have huge variance — O(N)

o N = number of inner loop samples

° Biased gradient estimate has better trade-off — bias O(1/N) and variance O(1/N)

o Sit between score-function estimate and “golden-rule” path-wise estimate
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Meta-RL optimization problem with one-step adaptation

Basic notations

o Policy parameter § € R(Tz)ve ].Og pH(TZ)

o Value function V(Q) % J
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One-sample estimate to PG

o Trajectory (Ti)g\il ~ Do
o Trajectory return R(Tz)
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Outer loop evaluation: Inner loop update:

Post-adaptation performance One-step N-sample PG estimate
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N-sample Monte-Carlo objective

° Classic Monte-Carlo objective

L(0) = Ex~p, [f(X)]

° N-sample Monte-Carlo objective
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° One-step meta-RL is a special instance # ﬁ Z f(Xz)
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o Slight modifications — see paper



Unbiased stochastic gradient estimate

Unbiased gradient estimate — score-function (SF) estimate has high variance
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“Sum” not “average”

Can construct examples where the variance is O(N)

o In practice (toy example and deep RL), SF exhibits high variance too
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Deriving biased gradient estimate
— 49

Limiting behavior of the estimate f—H
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To bypass the “unknown” control variate

o First-order Taylor expansion — make use of gradient information — create bias reduces variance

o Linearized score-function (LSF)
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Biased estimate with drastic variance reduction

) Final LSF estimate A “Average” not “sum”
T
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Make use of gradient information

° Theoretical properties: bias O(1/N) and variance O(1/N)

o See paper for formal statements

° An interpolation of “SF estimate” and “path-wise estimate (PW estimate)”
o “Blackbox” — compatible with RL and meta-RL, similar to SF estimate

o “Low variance” — make use of gradient information — similar to PW estimate
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Back to meta-RL

N-sample MC objective recovers one-step meta-RL as a special case

o Derive the corresponding LSF:
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Inner loop Hessian Outer loop gradient

Convergence guarantees have nicer dependencies on N, compared to SF (Fallah et al, 2020)
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Experiments: 1-D toy example
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(a) Bias-variance trade-off

(b) 1-D Optimization
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Experiments: deep RL
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Summary

Most prior work on “unbiased meta-gradient estimates for RL"” are
in fact biased.

Some meta-gradient estimates are biased for a very good reason
— drastic variance reduction.
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DeepMind

Thank you!
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