Balancing Sample Efficiency and Suboptimality in Inverse Reinforcement Learning

A.Damiani, Giorgio Manganini, A.Metelli, M.Restelli

Gran Sasso Science Institute (GSSI), L'Aquila, Italy giorgio.manganini@gssi.it

July 2022 Thirty-ninth International Conference on Machine Learning

Inverse Reinforcement Learning (IRL)

 IRL ¹ is the process of recovering, from (demonstrations of) an expert's policy, the expert's reward function

```
\pi_E expert's policy
```

 r_E, γ_E expert's reward and discount factor

The learned reward is intended to be successively used in forward Reinforcement Learning ²

M finite-sample budget for the forward RL phase

 \widehat{Q}_{M}^{\star} approximation of optimal $Q_{r,\gamma}^{\star}$, under a pair (γ,r)

¹[Ng and Russell, 2000]

²[RL, Sutton and Barto, 2018]

Balancing Sample Efficiency and Suboptimality

IRL

A reward r is compatible ^a with with the expert's policy π_E if

$$\pi \in \mathcal{G}\left[Q_{r,\gamma}^{\star}\right]$$

^a[Ng and Russell, 2000]

Sample Complexity

- How much data must we collect in order to achieve "learning"?
- Number of samples required to attain a near-optimal estimate of the optimal value-function

$$\sim \frac{1}{1-\gamma}^b$$

^a[Kakade, 2003]

be.g.,[Munos and Szepesvári, 2008, Farahmand et al., 2010, Lazaric et al., 2012, Azar et al., 2013]

$$\begin{split} \min_{r \in \mathcal{R}, \gamma \in [0,1)} \; \max_{\pi \in \mathcal{G}\left[\widehat{Q}_{M}^{\star}\right]} \; \left\| Q_{r_{E}, \gamma_{E}}^{\pi_{E}} - Q_{r_{E}, \gamma_{E}}^{\pi} \right\| \\ \text{s.t.} \; \left\| \widehat{Q}_{M}^{\star} - Q_{r, \gamma}^{\star} \right\| \leq \epsilon^{\star}(M, \gamma) \end{split}$$

Reward r compatibility with expert's π_E

• Worst-case distance between expert's π_E and the learned policy π under optimized r in the successive forward RL task

Sample complexity of forward RL phase

Tuned by directly optimizing γ

Forward RL phase with finite samples M

$$\begin{aligned} & \min_{r \in \mathcal{R}, \gamma \in [0,1)} & \max_{\pi \in \mathcal{G} \left[\widehat{Q}_{M}^{\star} \right]} & \left\| Q_{r_{E}, \gamma_{E}}^{\pi_{E}} - Q_{r_{E}, \gamma_{E}}^{\pi} \right\| \\ & \text{s.t.} & \left\| \widehat{Q}_{M}^{\star} - Q_{r, \gamma}^{\star} \right\| \leq \epsilon^{\star}(M, \gamma) \end{aligned}$$

Reward r compatibility with expert's π_E

• Worst-case distance between expert's π_E and the learned policy π under optimized r in the successive forward RL task

Sample complexity of forward RL phase

• Tuned by directly optimizing γ

Forward RL phase with finite samples ${\cal M}$

$$\min_{r \in \mathcal{R}, \ \gamma \in [0, 1)} \ \max_{\pi \in \mathcal{G}\left[\widehat{Q}_{M}^{\star}\right]} \ \left\| Q_{r_{E}, \gamma_{E}}^{\pi_{E}} - Q_{r_{E}, \gamma_{E}}^{\pi} \right\|$$

s.t.
$$\left\|\widehat{Q}_{M}^{\star} - Q_{r,\gamma}^{\star}\right\| \leq \epsilon^{\star}(M,\gamma)$$

Reward r compatibility with expert's π_E

• Worst-case distance between expert's π_E and the learned policy π under optimized r in the successive forward RL task

Sample complexity of forward RL phase

ullet Tuned by directly optimizing γ

Forward RL phase with finite samples ${\cal M}$

$$\min_{r \in \mathcal{R}, \gamma \in [0,1)} \max_{\pi \in \mathcal{G}\left[\hat{Q}_{M}^{\star}\right]} \left\| Q_{r_{E}, \gamma_{E}}^{\pi_{E}} - Q_{r_{E}, \gamma_{E}}^{\pi} \right\|$$

$$\text{s.t.} \ \left\| \widehat{Q}_M^\star - Q_{r,\gamma}^\star \right\| \leq \epsilon^\star(M,\gamma)$$

Reward r compatibility with expert's π_E

• Worst-case distance between expert's π_E and the learned policy π under optimized r in the successive forward RL task

Sample complexity of forward RL phase

• Tuned by directly optimizing γ

Forward RL phase with finite samples M

$$\min_{r \in \mathcal{R}, \ \gamma \in [0,1)} \max_{\pi \in \mathcal{G}\left[\widehat{Q}_{M}^{\star}\right]} \|Q_{r_{E}, \gamma_{E}}^{\pi_{E}}\|$$

s.t.
$$\left\|\widehat{Q}_{M}^{\star}-Q_{r,\gamma}^{\star}\right\|\leq\epsilon^{\star}(M,\gamma)$$

Reward r compatibility with expert's π_E

• Worst-case distance between expert's π_E and the learned policy π under optimized r in the successive forward RL task

Sample complexity of forward RL phase

• Tuned by directly optimizing γ

Forward RL phase with finite samples ${\cal M}$

Objective function

- \mathbf{x} Exper's reward r_E and discount γ_E are unknow
- **✓** Surrogate objective function
 - from value-function distance to policy divergence (Theorem 4.1)
- Computable from an offline dataset available at IRL time

Dealing with forward Q-function $Q_{r,\gamma}^{\star}$

- $\pmb{\times}$ Forward optimal Q-function $Q_{r,\gamma}^{\star}$ with the optimized pair (r,γ) is $\mbox{unknown}$
- X Might be estimated with an inner loop of forward RL
- ✓ We replace it with $Q_{r,\gamma}^{\pi_E}$, since when (r,γ) are compatible with the expert, $Q_{r,\gamma}^{\star} = Q_{r,\gamma}^{\pi_E}$ holds

$$\left\| \widehat{Q}_{M}^{\star} - \mathbf{Q}_{r,\gamma}^{\star} \right\| \leq \epsilon^{\star}(M,\gamma)$$

$$\downarrow$$

$$\left\| \widehat{Q}_{M}^{\pi_{E}} - Q_{r,\gamma}^{\pi_{E}} \right\| \leq \epsilon_{1}(M,\gamma)$$

Relaxing the greedy constraint

- Computation of greedy policy is complicated within maximization
- ✓ We perform two relaxations
 - transition from a greedy policy to all policy with at least a performance improvement
 - we enforce the constraint over a finite subset of states $\mathcal{D}_{\text{IRI}} \subset \mathcal{S}$

Enforcing the confidence region

$$\begin{split} \left\| \widehat{Q}_{M}^{\pi_{E}} - Q_{r,\gamma}^{\pi_{E}} \right\| &\leq \epsilon_{1}(M,\gamma) \\ \downarrow \\ \text{Proposition 4.3} \\ \downarrow \\ \sum_{s \in \mathcal{D}_{\text{IRL}}} \widehat{Q}_{N}^{\pi_{E}}(s,\pi(s)) - \widehat{Q}_{N}^{\pi_{E}}(s,\pi_{E}(s)) + 2\epsilon_{1}(M,\gamma) + 2\epsilon_{2}(N,\gamma) \geq 0 \end{split}$$

- $f{ imes}$ The confidence region on the forward $\widehat{Q}_M^{\pi_E}$ depends on the expert's **Q**-function $Q_{r,\gamma}^{\pi_E}$
- ✓ Compute a looser constraint by introducing the expert's Q-function approximation known at IRL time $Q_{NE}^{\pi_E}$

The solvable IRL formulation

$$\begin{split} \min_{\substack{\pmb{\theta} \in \mathbb{R}^{d_{\theta}} \\ \gamma \in [0,1)}} \; \max_{\substack{\pmb{\eta} \in \mathbb{R}^{d_{\eta}}} } \; \sum_{s \in \mathcal{D}_{\text{IRL}}} W_2 \big(\pi^E(s), \pi_{\pmb{\eta}}(s) \big) \\ \sum_{s \in \mathcal{D}_{\text{IRL}}} \hat{Q}_N^{\pi_E}(s, \pi_{\pmb{\eta}}(s)) - \hat{Q}_N^{\pi_E}(s, \pi_E(s)) + 2\epsilon_M + 2\epsilon_N \geq 0 \end{split}$$

We parametrize

$$r_{\boldsymbol{\theta}}(s, a) = \boldsymbol{\phi}(s, a)^{\top} \boldsymbol{\theta} : \boldsymbol{\theta} \in \mathbb{R}^{d_{\boldsymbol{\theta}}}$$
$$\boldsymbol{\pi}_{\boldsymbol{\eta}} : \boldsymbol{\eta} \in \mathbb{R}^{d_{\boldsymbol{\eta}}}$$

$$oldsymbol{\pi}_{oldsymbol{\eta}}:oldsymbol{\eta}\in\mathbb{R}^{d_{oldsymbol{\eta}}}$$

- $\hat{Q}_{N}^{\pi_{E}}$ is estimated by policy evaluation (e.g., LSTDQ 3)
- Min-max optimization is solved following the potential function approach, and minimizing it via gradient descent 4

³[Lagoudakis and Parr, 2003]

⁴[Razaviyayn et al., 2020]

LQ ⁵: forward learning results

- (a) IRL and expert's rewards share the same optimality, but IRL optimal pair (r_{θ}, γ) is more sample efficient (i.e., $\gamma < \gamma_E$)
- (b) IRL reward performs a (tunable) trade-off between the bias and the sample efficiency of the optimized pair (r_{θ}, γ)

⁵[Dorato et al., 1994]

Efficiency and Suboptimality in IRL

Mountain Car ⁶: forward learning results

- ullet Expert's reward leads to optimal policy, but requires large γ
- ullet IRL reward leads to a sub-optimal policy but admits a smaller γ , preferred for small values of M

⁶[Moore, 1990]

Novel IRL formulation in a nutshell

- Trade-off between
 - rever introduced on the learned policy when potentially choosing a sub-optimal reward
 - **sample efficiency** in the subsequent forward RL phase

Completely model-free

• No interaction with the environment

No planning or forward RL problem to be solved

Balancing Sample Efficiency and Suboptimality in Inverse Reinforcement Learning

A.Damiani, Giorgio Manganini, A.Metelli, M.Restelli

Gran Sasso Science Institute (GSSI), L'Aquila, Italy giorgio.manganini@gssi.it

July 2022 Thirty-ninth International Conference on Machine Learning

References I

- M. G. Azar, R. Munos, and H. J. Kappen. Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model. *Machine Learning*, 91(3):325–349, 2013. doi: 10.1007/s10994-013-5368-1.
- P. Dorato, V. Cerone, and C. Abdallah. Linear-quadratic control: an introduction. Simon & Schuster, Inc., 1994.
- A. M. Farahmand, R. Munos, and C. Szepesvári. Error propagation for approximate policy and value iteration. In Advances in Neural Information Processing Systems 23 (NIPS), pages 568–576, 2010.
- S. M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, UCL (University College London), 2003.
- M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine Learning Research, 4:1107-1149, 2003.
- A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of least-squares policy iteration. *Journal of Machine Learning Research*, 13:3041–3074, 2012.
- A. W. Moore. Efficient memory-based learning for robot control. Technical report, University of Cambridge, 1990.
- R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine Learning Research, 9:815-857, 2008.
- A. Y. Ng and S. J. Russell. Algorithms for Inverse Reinforcement Learning. In *Proceedings of the Seventeenth International Conference on Machine Learning (ICML)*, pages 663–670. Morgan Kaufmann Publishers Inc., 2000.
- M. Razaviyayn, T. Huang, S. Lu, M. Nouiehed, M. Sanjabi, and M. Hong. Non-convex min-max optimization: Applications, challenges, and recent theoretical advances. arXiv:2006.08141, Aug 2020. arXiv: 2006.08141.
- R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Giorgio Manganini

G S