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Inverse Reinforcement Learning (IRL)

• IRL 1 is the process of recovering, from (demonstrations of) an expert’s policy, the expert’s
reward function

πE expert’s policy
rE , γE expert’s reward and discount factor

• The learned reward is intended to be successively used in forward Reinforcement Learning 2

M finite-sample budget for the forward RL phase
Q̂?M approximation of optimal Q?r,γ , under a pair (γ, r)

1[Ng and Russell, 2000]
2[RL, Sutton and Barto, 2018]
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Balancing Sample Efficiency and Suboptimality

IRL
A reward r is compatible a with with the expert’s policy πE if

π ∈ G
[
Q?r,γ

]
a[Ng and Russell, 2000]

Sample Complexity
• How much data must we collect in order to achieve “learning”? a

• Number of samples required to attain a near-optimal estimate of the optimal value-function

∼ 1

1− γ
b

a[Kakade, 2003]
be.g.,[Munos and Szepesvári, 2008, Farahmand et al., 2010, Lazaric et al., 2012, Azar et al., 2013]

Giorgio Manganini Efficiency and Suboptimality in IRL 3 / 14



Novel IRL Formulation for Efficient Forward Learning

min
r∈R,γ∈[0,1)

max
π∈G[Q̂?M ]

∥∥QπErE ,γE −QπrE ,γE∥∥
s.t.

∥∥∥Q̂?M −Q?r,γ∥∥∥ ≤ ε?(M,γ)

Reward r compatibility with expert’s πE
• Worst-case distance between expert’s πE and

the learned policy π under optimized r in the
successive forward RL task

Sample complexity of forward RL phase

• Tuned by directly optimizing γ

Forward RL phase with finite samples M

• Confidence region of the future estimated
optimal Q-function Q̂?M under the optimized
reward and discount (r, γ)
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Objective function

é Exper’s reward rE and discount γE are unknow

Ë Surrogate objective function
I from value-function distance to policy divergence

(Theorem 4.1)

Ë Computable from an offline dataset available at IRL
time

∥∥QπErE ,γE
−QπrE ,γE

∥∥y
Theorem 4.1y∫

S
W2(πE(·|s), π(·|s)) ds
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Dealing with forward Q-function Q?
r,γ

é Forward optimal Q-function Q?r,γ with the optimized pair
(r, γ) is unknown

é Might be estimated with an inner loop of forward RL

Ë We replace it with QπEr,γ , since when (r, γ) are
compatible with the expert, Q?r,γ = QπEr,γ holds

∥∥∥Q̂?M −Q?r,γ

∥∥∥ ≤ ε?(M,γ)y∥∥∥Q̂πEM −QπEr,γ∥∥∥ ≤ ε1(M,γ)
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Relaxing the greedy constraint

é Computation of greedy policy is complicated within
maximization

Ë We perform two relaxations
I transition from a greedy policy to all policy with at least

a performance improvement
I we enforce the constraint over a finite subset of states
DIRL ⊆ S

π ∈ G
[
Q̂πEM

]
y

Q̂πEM (s, π(s)) ≥ Q̂πEM (s, πE(s)) ∀s ∈ Sy∑
s∈DIRL

Q̂πEM (s, π(s))− Q̂πEM (s, πE(s)) ≥ 0

Giorgio Manganini Efficiency and Suboptimality in IRL 7 / 14



Enforcing the confidence region

∥∥∥Q̂πEM −QπEr,γ∥∥∥ ≤ ε1(M,γ)y
Proposition 4.3y∑

s∈DIRL

Q̂πEN (s, π(s))− Q̂πEN (s, πE(s)) + 2ε1(M,γ) + 2ε2(N, γ) ≥ 0

é The confidence region on the forward Q̂πEM depends on the expert’s Q-function QπEr,γ

Ë Compute a looser constraint by introducing the expert’s Q-function approximation known at IRL
time QπEN
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The solvable IRL formulation

min
θ∈Rdθ
γ∈[0,1)

max
η∈Rdη

∑
s∈DIRL

W2

(
πE(s), πη(s)

)
∑
s∈DIRL

Q̂πEN (s, πη(s))− Q̂πEN (s, πE(s)) + 2εM + 2εN ≥ 0

• We parametrize
I rθ(s, a) = φ(s, a)>θ : θ ∈ Rdθ
I πη : η ∈ Rdη

• Q̂πEN is estimated by policy evaluation (e.g., LSTDQ 3)

• Min-max optimization is solved following the potential function approach, and minimizing it via
gradient descent 4

3[Lagoudakis and Parr, 2003]
4[Razaviyayn et al., 2020]
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LQ 5: forward learning results

(a) Expert’s environment (b) Modified environment

(a) IRL and expert’s rewards share the same optimality, but IRL optimal pair (rθ, γ) is more sample
efficient (i.e., γ < γE)

(b) IRL reward peforms a (tunable) trade-off between the bias and the sample efficiency of the
optimized pair (rθ, γ)

5[Dorato et al., 1994]
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Mountain Car 6: forward learning results
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• Expert’s reward leads to optimal policy, but requires large γ

• IRL reward leads to a sub-optimal policy but admits a smaller γ, preferred for small values of M

6[Moore, 1990]
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Novel IRL formulation in a nutshell

• Trade-off between
I error introduced on the learned policy when potentially choosing a sub-optimal reward
I sample efficiency in the subsequent forward RL phase

• Completely model-free

• No interaction with the environment

• No planning or forward RL problem to be solved
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