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Pitfalls in OPE? 
• Offline policy evaluation (OPE) is a fundamental task in offline RL. We want to 

estimate the value of evaluation policies from offline data. 

• Most of papers assume behavior policies depend on observable quantities. 
But is it really true 😶 ? 

Value of a new 
evaluation policy? 

Offline data 

Action 
(generated by a 
behavior policy) 

Reward 

Observation



Standard OPE (without unmeasured confounders) 

• (Behavior policies): Specified by only measured cofounders. 


• (Evaluation policies): Depends on only measured cofounders.

Drug Health outcome

Measured confounders

 (Age, gender, etc.)

Consider clinical trials.

 𝒜

 𝒮



OPE with unmeaseud confounders 

• (Behavior policies): “Nap” is affected by unmeasured variables.  


• (Evaluation policies): Depend on observable variables. 

Nap Health outcome

Measured confounders 

(Age, gender, …)

Unmeasured confounders

 (Gene, brain activity etc.)

Consider  (non-exprimental) historical data.

 𝒮

 𝒜

 𝒪



Our contribution  

1. We introduce novel value bridge functions.


2. We propose OPE methods by estimating value bridge functions. Our 
proposal allows for any function approximation. 

We consider OPE with unmeasured confounders in RL. (In confounded POMDPs)

S0 S1 S2

A0 R0 A1 R1

O0 O1



Confounded POMDPs 

• Behavior policies , evaluation policies . 


• Our goal is to estimate . 


• We have data   following . (  are 
unobservable) 

πb : 𝒮 → Δ(𝒜) πe : 𝒪 → Δ(𝒜)

J(πe) = 𝔼πe[
∞

∑
t=0

γtrt]

𝒟 = {(Si, Oi, Ai, Ri, Oi+1, Si+1)} πb Si, Si+1

S0 S1 S2

A0 R0 A1 R1

O0 O1



Confounded POMDPs 

We have data


   


 (  are unobservable)

𝒟 = {(Si, Oi, Ai, Ri, Si+1, Oi+1)} .

Si, Si+1

S0 S1 S2

A0 R0 A1 R1

O0 O1

Equivalently, we have many tuples 
consisting of  . (O−, S, O, A, R, S+, O+)

S

A R

O

S+

O+O−

Conversion

πb
πb

πb



Why diffcult? 
Consider the contextual bandit setting. 


• IS estimator  does not work.𝔼πb [ πe(a ∣ o)
πb(a ∣ s)

× r]

• Direct method   does not work. 𝔼πb [∑
a′￼

πe(a′￼ ∣ o)𝔼[r ∣ s, a′￼]]

We cannot observe S. 

S

A R

O



Why diffcult? 
Consider the RL setting. 


• IS estimator  does not work.(1 − γ)−1𝔼πb [wπe/πb(s) ×
πe(a ∣ o)
πb(a ∣ s)

× r]

• Direct method estimator   does not work. 𝔼πb [∑
a

πe(a ∣ o)qπe(s, a)]

Weight functions. Ratio of occupancy distributions   Pπe(s)/Pπb(s)

Q-functions   𝔼πe[
∞

∑
t=0

γtrt |s0 = s, a0 = a]

S

A R

O

S+

O+O−



Value bridge functions 
Can we consider the analog of weight functions 
and Q-functions in confounded POMDPs?

(Definition) Value bridge functions  are defined as solutions to 
  


bV : 𝒜 × 𝒪 → ℝ
𝔼πb[bV(a, o) ∣ a, s] = qπe(s, a)𝔼πb[πe(a ∣ o) ∣ s]

(Definition) Weight bridge functions  are defined as solutions to 
  


bW : 𝒜 × 𝒪 → ℝ
𝔼πb[bW(a, o−) ∣ a, s] = wπe/πb(s)/πb(a ∣ s) .

S

A R

O

S+

O+O−

When do they exist? 



Existence of value bridge functions 
• We need the existence of value bridge functions  s.t. 


. 


• Roughly, it is satisfied  retains enough information about . 


• In the tabular case,  . 


bV

𝔼πb[bV(a, o) ∣ a, s] = qπe(s, a)𝔼πb[πe(a ∣ o) ∣ s]

O S

rank(G) = |𝒮 |

|𝒪 |

|𝒮 | P(o = i |s = j)

i

j

Matrix G

* Assumed in many HMM/
POMDP works. 




Existence of weight bridge functions 
• We need the existence of value bridge functions:





• Roughly, it is satisfied   retains enough information about . 


• In the tabular case,  . 


𝔼πb[bW(a, o−) ∣ a, s] = wπe/πb(s)/πb(a ∣ s) .

O− S

rank(Ha) = |𝒮 | Pπb(s = i |o− = j, a)

i

j

Matrix Ha

|𝒪 |

|𝒮 |



How to use bridge functions for OPE? 

When bridge functions exist, we can ensure


Direct method:  J = 𝔼o∼ν[∑
a′￼

bV(a′￼, o)]

IS method: J = 𝔼[bW(a, o−)πe(a ∣ o)r]



Learnable Value bridge functions 
• Definition of value bridge functions

 is not still useful for learning 😂

• We can use the analog of Bellman equations for value bridge functions: 




• This is equivalent to 

  for any  


• We can similarly define Bellman flow equations for weight bridge functions . 

𝔼πb[bV(a, o) ∣ a, s] = qπe(s, a)𝔼πb[πe(a ∣ o) ∣ s]

𝔼πb[γ∑
a′￼

bV(a′￼, o+) + rπe(a ∣ o) − bV(a, o) ∣ a, o−] = 0.

𝔼πb[{γ∑
a′￼

bV(a′￼, o+) + rπe(a ∣ o) − bV(a, o)}f(a, o−)] = 0 f ∈ [𝒜 × 𝒪 → ℝ]

bW

This forms a basis for learning   😀bV, bW



IS/Direct method with minimax estimators 

(1) Construct 


(2) Direct method  

b̂V := argming∈𝒱 max
f∈𝒱†

𝔼𝒟 [{γ∑
a′￼

g(a′￼, o+) + rπe(a ∣ o) − g(a, o)}f(a, o−)]
̂JVM = 𝔼o∼ν[∑

a′￼

b̂V(a′￼, o)]

Function classes: , . 𝒱 ⊂ [𝒜 × 𝒪 → ℝ] 𝒱† ⊂ [𝒜 × 𝒪 → ℝ]

Function classes: , . 𝒲 ⊂ [𝒜 × 𝒪 → ℝ] 𝒲† ⊂ [𝒜 × 𝒪 → ℝ]

(1) Construct  for some loss . 


(2) IS method  

b̂W := argming∈𝒲 max
f∈𝒲†

𝔼𝒟[LW(g, f )] Lw

̂JIS = 𝔼𝒟[b̂W(a, o−)rπe(a ∣ o)]

PO-MQL

(Partially Observable Minimax 


Q-function learning)

PO-MWL 

(Partially Observable 

Minimax Weight learning)

Empirical approximation



Doubly robust method with minimax estimators 




We can prove  is consistent as long as either  or  is consistent. 

̂JDR = 𝔼o∼νo
[∑

a′￼

b̂V(a′￼, o)] + 𝔼𝒟 [(1 − γ)−1b̂W(a, o−)[{r + γ∑
a′￼

b̂V(a′￼, o+)}πe(a ∣ o) − b̂V(a, o)]]
̂JDR b̂V b̂W

PO-DR

(Partially observable doubly robust)

b̂Wb̂V



Experiment

• MWL, MQL, DR are existing 
methods for MDPs. 


• PO-MWL, PO-MQL, PO-DR are our 
proposal. 

Result

Setting

• We consider confounded POMDPs 
using Cartpole envrionments.


• We add gaussian noise to states. 



More contents

• Various finite sample results (realizability+ bellman completeness, doubly 
realizability, etc) 


• Finite horizon case. 


• Memory-based policies.  



Summary 
• Consider OPE methods with unmeasured cofounders. 


• We can estimate the policy value via value/weight bridge functions.  


• (1) Estimate value/weight bridge functions using the minimax loss function. 


• (2) Plug them into IS (PO-MWL), direct methods (PO-MQL), and doubly 
robust methods (PO-DR). 


