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Pitfalls in OPE?

» Offline policy evaluation (OPE) is a fundamental task in offline RL. We want to
estimate the value of evaluation policies from offline data.
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 Most of papers assume behavior policies depend on observable quantities.
But is it really true ¢» ?



Standard OPE (without unmeasured confounders)

Measured confounders Ko
(Age, gender, etc.)

/

Consider clinical trials.
* (Behavior policies): Specified by only measured cofounders.

o ( ): Depends on only measured cofounders.



OPE with unmeaseud confounders

Unmeasured confounders Ko
(Gene, brain activity etc.)

J

Measured confounders
(Age, gender, ...)

Consider (non-exprimental) historical data.
e (Behavior policies): “Nap” is affected by unmeasured variables.

¢ ( ): Depend on observable variables.



Our contribution

We consider OPE with unmeasured confounders in RL. (In confounded POMDPSs)
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1. We introduce novel value bridge functions.

2. We propose OPE methods by estimating value bridge functions. Our
proposal allows for any function approximation.



Confounded POMDPs

. Behavior policies 7”7 : & — A(H), 7.0 - A(HA).

. Our goal is to estimate J»*) = [E@i y'r].
=0

. We have data 2 = {(S;,0,,A,R;,O.,,,S.,,)} following z°. (S,, S., | are
unobservable)



Confounded POMDPs
(50, (5, (S,

We have data

Equivalently, we have many tuples
D= 10505 Ap Ry, 5141, O )Y - consisting of (0~ S, 0,A, R, S*, 0.

(S;, S;, 1 are unobservable)



Why diffcult?

Consider the contextual bandit setting.

. IS estimator

Direct method

n(a |©)

C [ﬂ alo) x r| does not work.
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b |:Z 71'6(61’ | 0)

We cannot observe S.

/

“[r \@a’]] does not work.



Consider the RL setting.

Why diffcult? )
\

v
na | o —
W e/ 5(8) X alo) x r| does not work.

(a |(9)

. IS estimator (1 —y)~!

Weight functions. Ratio of occupancy distributions P _.(s)/P _+(s)

o0
Q-functions [t _.| 2 ytrt | 5o = 5, a5 = al
=0

!

, Direct method estimator E_, [Z 7é(a | o)q”e@a)] does not work.




Value bridge functions

Can we consider the analog of weight functions
and Q-functions in confounded POMDPs?

(Definition) Value bridge functions by, : &/ X (0 — R are defined as solutions to
=lbyla, o) | a,s] = q* (s,a)Epln(a | o) | ]

(Definition) Weight bridge functions by, : &/ X O — R are defined as solutions to
= slbyla, 07) | a, 8] = we()n’(a | s) .

When do they exist?



Existence of value bridge functions

» We need the existence of value bridge functions by, s.t.

- slby(a, o) | a,s] = q”e(s, a)t_,[7(a | o) | s].
» Roughly, it is satisfied O retains enough information about S.

e In the tabular case, rank(G) = |&|. 9] >P(0 =1i|s =)

* Assumed in many HMM/
POMDP works.

| O]

Matrix G



Existence of weight bridge functions

* We need the existence of value bridge functions:

= lbyla,07) | a,s] =w. ., .(8)/n(a | s).

» Roughly, it is satisfied O~ retains enough information about 3.

» In the tabular case, rank(H) = | &|. @ Pu(s =ilo™ =j,a)

| &)

Matrix H



How to use bridge functions for OPE?

When bridge functions exist, we can ensure

Direct method: J = _o~u[2 by(a’,0)]
a/

IS method: J = E[by(a,o0™)x(a | o)r]




Learnable Value bridge functions

» Definition of value bridge functions

= lby(a,0) | a,s] = qﬂe(S, a)E_[7°(a | 0) | s]is not still useful for learning &

 We can use the analog of Bellman equations for value bridge functions:

_ﬂb[}/z bV(a,9 0+) +rr(a | o) — bv(a, o) | a,0”] =0.

* This is equivalent to
=y Y by@, 0%) + ra%(a | 0) — by(a,0)}f(a,07)] = Oforany f € [/ X 6 — R]

» We can similarly define Bellman flow equations for weight bridge functions by,

This forms a basis for learning by, by, ©



IS/Direct method with minimax estimators
PO-MQL

Partially Observable Minimax . -UNCtioN classes: 7 C [ X O — R], VT Cld X0 — 1

Q-function learning)

(1) Construct I;V .= argmingE% max e,
fev?

(r ) g(a’0) +ra%a | 0) — g, 0)}f(a,07)

(2) Direct method Jy,, = E,_ [ Z l;V(a’, 0)]

Empirical approximation

PO-MWL

partiallyobservable | Function classes: # C [ X O - R, W C [ X O — |

Minimax Weight learning)

(1) Construct I;W 1= argmin,cq, max = Ly(g,f)] forsomeloss L,,..
W=/

(2) IS method flS = —@[IA?W(a, o )rn(a | o)]




PO-DR

(Partially observable doubly robust)

JDR —

'o~u0[ Z I;V(a’, 0)] +

Doubly robust method with minimax estimators

- 5 [(1 — ;/)_IIAQW(a, 07) [{r + }/Z I;V(a’, o) x(a | o) — lgv(a, 0)] ]

We can prove Jp is consistent as long as either by, or by, is consistent.



Experiment
Setting

CartPole with Obs Noise ~ N(0, 0.1)

* We consider confounded POMDPs
using Cartpole envrionments.
 We add gaussian noise to states.

Result

« MWL, MQL, DR are existing
methods for MDPs.

« PO-MWL, PO-MQL, PO-DR are our
proposal.

Log MSE (relative)

3.0 4.0 5.0 6.0
Choice of 1o



More contents

* Various finite sample results (realizability+ bellman completeness, doubly
realizability, etc)

e Finite horizon case.

 Memory-based policies.



Summary

* Consider OPE methods with unmeasured cofounders.
* We can estimate the policy value via value/weight bridge functions.

* (1) Estimate value/weight bridge functions using the minimax loss function.

e (2) Plug them into IS (PO-MWL), direct methods (PO-MQL), and doubly
robust methods (PO-DR).



