

Certified Neural Network Watermarks with Randomized Smoothing

Arpit, Ping, Michael, Rajiv, Curtis, Varun, John and Tom

Abstract

- The watermark should be preserved when an adversary tries to copy the model.
- New techniques often fail in the face of new or better-tuned adversaries.
- We propose a certifiable watermarking method.
- We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l_2 threshold.

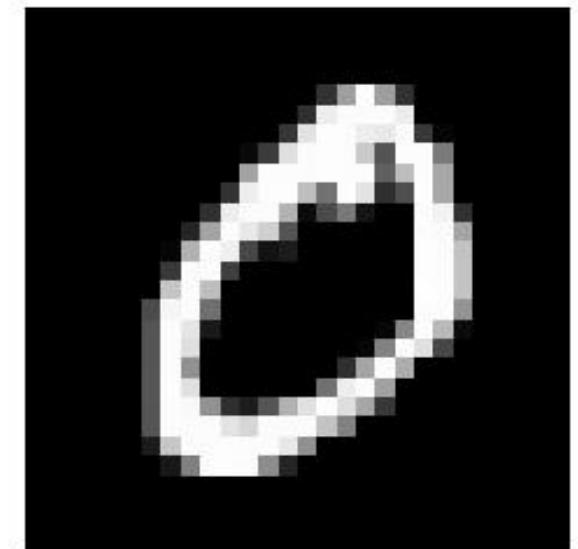
How to watermark DNNs ?

(a) Original

(b) Embedded Content



(c) Gaussian Noise



(d) Unrelated

How do we certify watermarks ?

Key Differences

Adversarial Robustness

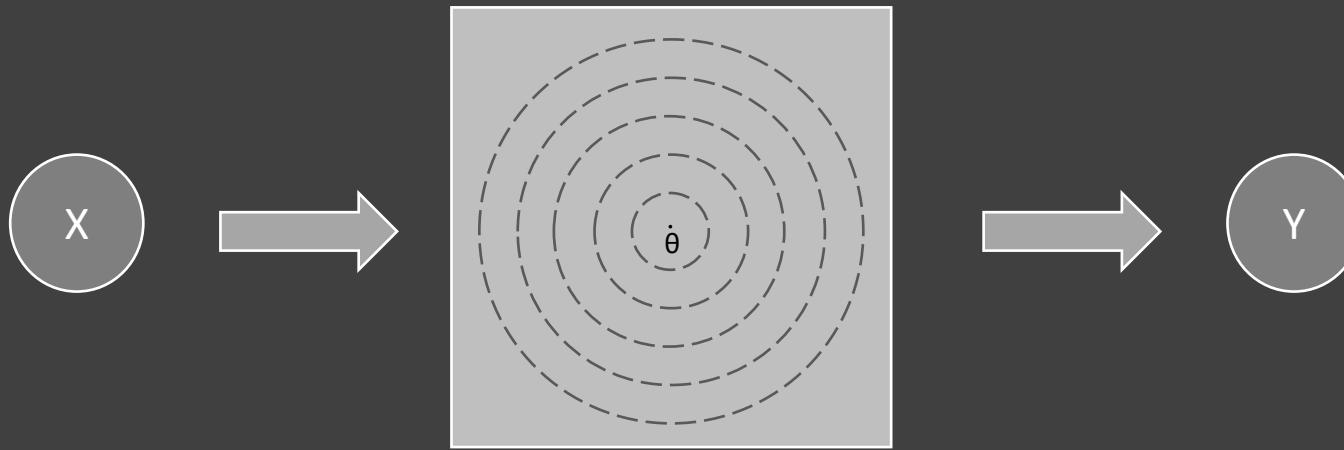
- Smoothing results to bound outputs of the classifier, hence smoothing is done on input.
- Given a function - $f(X, \theta)$: θ is constant while X changes.

Watermarking Robustness

- Smoothing over the trigger set accuracy function, hence smoothing is done over parameters.
- Given a function - $f(X, \theta)$: X is constant while θ changes

How to embed certifiable watermark ?

- Add Gaussian noise to model weights and train on the trigger set images with the desired labels.
- For a given trigger set image, average gradients across several draws of noise to better approximate the gradient of the smoothed classifier.



Watermark Removal Threat Model

- Distillation
 - Initializes their model with our original model, and then trains their model with distillation using unlabeled data.
- Finetuning
 - Initializes their model with our original model, and then finetunes their model using labeled data.
- l_2 Adversary
 - Adversary is allowed to move the parameters at most a certain l_2 distance to maximally decrease trigger set accuracy.

Results

- Attack Radius vs Worst Case Accuracy of the Model.
- Certified trigger set accuracy at different radius

	Attack Radius	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
Worst Case Accuracy	85.8%	82.5%	80.5%	76.2%	67.1%	56.1%	32.0%	18.4%	8.4%	

Dataset	Watermark	ℓ_2 Radius (ϵ)					
		0.2	0.4	0.6	0.8	1	1.2
MNIST	Embedded content	100%	95%	47%	3%	0%	0%
MNIST	Noise	100%	91%	7%	0%	0%	0%
MNIST	Unrelated	100%	94%	45%	4%	0%	0%
CIFAR-10	Embedded content	100%	100%	100%	93%	51%	5%
CIFAR-10	Noise	100%	100%	100%	100%	47%	0%
CIFAR-10	Unrelated	100%	100%	100%	97%	35%	0%

Dataset	Attack	lr	Baseline Watermark	Black-box Watermark	White-box Watermark
MNIST	Finetuning	0.0001	45.31%	59.38%	100.00%
MNIST	Finetuning	0.001	50.00%	54.70%	100.00%
MNIST	Hard-Label Distillation	0.001	42.19%	50.00%	100.00%
MNIST	Soft-Label Distillation	0.001	96.88%	100.00%	100.00%
CIFAR-10	Finetuning	0.0001	17.20%	9.40%	100.00%
CIFAR-10	Finetuning	0.001	14.06%	10.94%	100.00%
CIFAR-10	Hard-Label Distillation	0.001	29.69%	81.25%	100.00%
CIFAR-10	Soft-Label Distillation	0.001	81.25%	100.00%	100.00%
CIFAR-100	Finetuning	0.0001	18.75%	23.44%	100.00%
CIFAR-100	Finetuning	0.001	0.00%	0.00%	0.00%
CIFAR-100	Hard-Label Distillation	0.001	7.81%	12.5%	5.00%
CIFAR-100	Soft-Label Distillation	0.001	96.88%	96.88%	98.44%
MNIST	Hard-Label Distillation + Reg	0.1	40.63%	32.81%	0.00%
CIFAR-10	Hard-Label Distillation + Reg	0.1	8.00%	27.00%	0.00%
CIFAR-100	Hard-Label Distillation + Reg	0.1	0.00%	0.00%	0.00%

Conclusion

- We present a certifiable neural network watermark.
- The first step towards guaranteed persistence of watermarks in the face of adversaries.
- We find that our certifiable watermarks are empirically far more resistant to removal than the certified bounds can guarantee