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Scope: Linear Kolmogorov PDEs

We want to solve PDEs (partial differential equations) of the form

(
∂t +

1

2
(σσ>) : ∇2 + b · ∇

)
V (x , t) = 0, V (x ,T ) = g(x), (x , t) ∈ Rd × [0,T ].

Applications: modelling of diffusion processes in physics, pricing of financial derivatives,
reinforcement learning, diffusion-based generative modeling, ...

Idea: minimize variational formulations using neural networks uθ ∈ U with parameters θ,
i.e. consider losses

L : U → R≥0,

which shall be minimal iff u ∈ U fulfills the PDE.
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SDE-Based Variational Formulations

Question: which loss do we choose in practice?

Stochastic representation: Itô calculus (cf. Feynman-Kac formula) shows

g(XT )− V (ξ, τ)︸ ︷︷ ︸
:=∆V

−
∫ T

τ
σ(Xs)>∇V (Xs , s) · dWs︸ ︷︷ ︸

:=SV

= 0,

where X is the solution to the SDE (stochastic differential equation)

dXs = b(Xs)ds + σ(Xs)dWs , Xτ = ξ.

As the stochastic integral Su has vanishing expectation, this motivates the two losses

LFK(u) := E
[
∆2

u

]
and LBSDE(u) := E

[
(∆u − Su)2

]
,

where (ξ, τ) ∼ Unif(Rd × [0,T ]).
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Robustness of the Losses

The stochastic integral Su in LBSDE can be interpreted as a control variate.

It guarantees statistical advantages for the estimator versions L(K) (with K samples) at
the optimum uθ = V :

Proposition (Variance of Losses)

V
[
L(K)

FK (uθ)
]

=
1

K
V
[
S2
V

]
and V

[
L(K)

BSDE(uθ)
]

= 0.

Proposition (Variance of Gradients)

V
[
∇θL

(K)
FK (uθ)

]
=

4

K
V
[
SV∇θuθ(ξ, τ)

]
and V

[
∇θL

(K)
BSDE(uθ)

]
= 0.
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Numerical Experiments

We propose various versions to include the control variate: Lgrad
BSDE,Ldetach

BSDE and LBSDE, eff .

We improve state-of-the-art performance and analyze trade-offs between accuracy and
complexity.
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Thank you for your attention!

lorenz.richter@fu-berlin.de, julius.berner@univie.ac.at

Source code: https://github.com/juliusberner/robust_kolmogorov
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