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Scope: Linear Kolmogorov PDEs

e We want to solve PDEs (partial differential equations) of the form

(at + %(aaT) :V2+b- v) V(x,t)=0, V(x,T)=g(x),
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e We want to solve PDEs (partial differential equations) of the form
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o Applications: modelling of diffusion processes in physics, pricing of financial derivatives,
reinforcement learning, diffusion-based generative modeling, ...
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Scope: Linear Kolmogorov PDEs

e We want to solve PDEs (partial differential equations) of the form

(at+§(aaT):v2+b-v) Vix,)=0, V(xT)=g(x), (x.t)eRIx[0,T]

o Applications: modelling of diffusion processes in physics, pricing of financial derivatives,
reinforcement learning, diffusion-based generative modeling, ...

o ldea: minimize variational formulations using neural networks ug € U with parameters 6,
i.e. consider losses

L:U— RZ()’
which shall be minimal iff u € U fulfills the PDE.
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SDE-Based Variational Formulations

@ Question: which loss do we choose in practice?
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SDE-Based Variational Formulations

@ Question: which loss do we choose in practice?
o Stochastic representation: /t6 calculus (cf. Feynman-Kac formula) shows

g
g(Xr) — V(E.T) - / o(Xe) TV V(Xe,s) - dWs = 0,

T
/

::A\/ ::SV
where X is the solution to the SDE (stochastic differential equation)
dXs = b(Xs)ds + o(Xs) dWs, X; =&
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SDE-Based Variational Formulations

@ Question: which loss do we choose in practice?
o Stochastic representation: /t6 calculus (cf. Feynman-Kac formula) shows

g
g(Xr) — V(E.T) - / o(Xe) TV V(Xe,s) - dWs = 0,

T
/
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where X is the solution to the SDE (stochastic differential equation)
dXs = b(Xs)ds + o(Xs) dWs, X; =&

@ As the stochastic integral S, has vanishing expectation, this motivates the two losses
Lox(u) =E[A2]  and  Laspu(u) =E (A - S,)°],

where (¢, 7) ~ Unif(R9 x [0, T]).
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Robustness of the Losses
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Robustness of the Losses

@ The stochastic integral S, in Lgspg can be interpreted as a control variate.
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Robustness of the Losses

@ The stochastic integral S, in Lgspg can be interpreted as a control variate.

o It guarantees statistical advantages for the estimator versions £X) (with K samples) at
the optimum ug = V:
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Robustness of the Losses

@ The stochastic integral S, in Lgspg can be interpreted as a control variate.

o It guarantees statistical advantages for the estimator versions £X) (with K samples) at
the optimum wuy = V:

Proposition (Variance of Losses)

v [ £49(us)] _%V[S\z/] and  V[£h(u)] =0
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Robustness of the Losses

@ The stochastic integral S, in Lgspg can be interpreted as a control variate.

o It guarantees statistical advantages for the estimator versions £X) (with K samples) at
the optimum wuy = V:

Proposition (Variance of Losses)

1
% [L%'Q(ua)} — RV [5\2/] and \Y [ﬁgéﬁ(u@)} =0

Proposition (Variance of Gradients)

[V@ﬁ (UG)] - V [S\/VQUQ(f, 7’)] and A% [VQE](;;%)E(UQ)} =0
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Numerical Experiments

@ We propose various versions to include the control variate: £

Robust Variational Formulations for Solving PDEs

grad
BSDE>»

L

detach
BSDE

and LBSDE, eff -

5/6



Numerical Experiments

o We propose various versions to include the control variate: E%rsagE, L& and LpspE, eff -

@ We improve state-of-the-art performance and analyze trade-offs between accuracy and

complexity.
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Thank you for your attention!

lorenz.richter@fu-berlin.de, julius.berner@univie.ac.at

Source code: https://github.com/juliusberner/robust_kolmogorov
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