ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks

Haoran You¹, Baopu Li², Huihong Shi¹, Yonggan Fu¹, Yingyan Lin¹

ICML 2022

¹Rice University, ²Oracle Corporation

ShiftAddNAS: Background and Motivation

- Two branches of SOTA DNN design: Trade off accuracy and efficiency
 - Multiplication-based DNNs, e.g., CNNs, Transformers
 - **Output** Achieve unprecedented task accuracy
 - **Power hungry** → Challenge their deployment to edge devices

ShiftAddNAS: Background and Motivation

- Two branches of SOTA DNN design: Trade off accuracy and efficiency
 - Multiplication-based DNNs, e.g., CNNs, Transformers
 - **Output** Achieve unprecedented task accuracy
 - **Power hungry** → Challenge their deployment to edge devices
 - Multiplication-free DNNs, e.g., ShiftNet, AdderNet, ShiftAddNet
 - **Efficient and favor their deployment to edge devices**
 - Under-perform their multiplication-based counterparts in terms of task accuracy

ShiftAddNAS: Background and Motivation

Motivation of ShiftAddNAS

- Enable automated search for hybrid network architecture to marry the best of both worlds
 - Multiplication-based operators (e.g., Conv & Attention) → High accuracy
 - **○** Multiplication-free operators (e.g., Shift & Add) → High efficiency

ShiftAddNAS: Tackled Challenges

Motivation of ShiftAddNAS

- Enable automated search for hybrid network architecture to marry the best of both worlds
 - Multiplication-based operators (e.g., Conv & Attention) → High accuracy
 - Multiplication-free operators (e.g., Shift & Add) → High efficiency

Associated Challenges

- How to construct an effective hybrid search space?
- More operators → larger SuperNets, but SOTA weight sharing strategy is not applicable

ShiftAddNAS: Our Contributions

For the first time, we

- Develop ShiftAddNAS, featuring a hybrid search space that incorporates both multiplication-based and multiplication-free operators
- Propose a new heterogeneous weight sharing strategy that enables automated search for hybrid operators with heterogeneous weight distributions
- Conduct extensive experiments on both CV and NLP tasks to validate the effectiveness of our proposed ShiftAddNAS framework

- Search space for NLP tasks
 - Seven different blocks
 - Attn, Conv, Shift, and Add
 - Attn+Conv, Attn+Add, and Attn+Shift
 - Elastic dimensions for MLPs, embeddings, and heads

Encoder block types	[Attn, Attn+Conv, Attn+Shift] [Attn+Add, Conv, Shift, Add]					
Decoder block types	[Attn, Attn+Conv] [Attn+Shift, Attn+Add]					
Num. of decoder blocks	[6, 5, 4, 3, 2, 1]					
Elastic embed. Dim.	[1024, 768, 512]					
Elastic head number	[16, 8, 4]					
Elastic MLP dim.	[4096, 3072, 2048, 1024]					
Arbitrary Attn	[3, 2, 1]					

The Search Space for NLP Tasks

- Search space for NLP tasks
 - Seven different blocks
 - Attn, Conv, Shift, and Add
 - Attn+Conv, Attn+Add, and Attn+Shift
 - Elastic dimensions for MLPs, embeddings, and heads

The SuperNet for NLP Tasks

- Search space for NLP tasks
- Search space for CV tasks
 - Multi-resolution
 - Various spatial resolutions or scales are essential for CV tasks

Block types	[Attn, Conv, Shift, Add]
Num. of $56^2 \times 128$ blocks	[1, 2, 3, 4]
Num. of $28^2 \times 256$ blocks	[1, 2, 3, 4]
Num. of $14^2 \times 512$ blocks	[3, 4, 5, 6, 7]
Num. of $7^2 \times 1024$ blocks	[4, 5, 6, 7, 8, 9]

The Search Space for CV Tasks

- Search space for NLP tasks
- Search space for CV tasks
 - Multi-resolution
 - Various spatial resolutions or scales are essential for CV tasks

The SuperNet for CV Tasks

Contribution 2: Heterogenous Weight Sharing Strategy

- One-shot NAS with heterogeneous weight sharing
 - Weight sharing among Conv, Add, and Shift blocks

(a) Heterogenous Weight Sharing Strategy

$$\begin{split} \mathcal{L}_{\mathcal{S}} &= \mathcal{L}_{CE} + \mathcal{L}_{KL} = -\frac{1}{N} \sum_{i=1}^{N} P(y_i | x_i) \log(P(\hat{y}_i | x_i)) \\ &+ \mathcal{D}_{KL}(P_{\texttt{Conv}}(\mathbf{W}_{\mathcal{S}}) \mid\mid \mathcal{N}(0, I)) + \mathcal{D}_{KL}(P_{\texttt{Add}}(\mathcal{T}(\mathbf{W}_{\mathcal{S}})) \mid\mid \mathcal{L}_p(0, \lambda)), \end{split}$$

ShiftAddNAS: Experimental Setting

NLP tasks

- Two datasets
 - WMT'14 English to French (En-Fr)
 - WMT'14 English to German (En-De)
- Five evaluation metrics
 - BLEU score
 - Number of parameters/FLOPs
 - Hardware energy and latency
- Four baselines
 - Transformer
 - Lightweight Conv
 - Lite Transformer
 - HAT

CV tasks

- One dataset: ImageNet
- Five evaluation metrics
 - Accuracy
 - Number of parameters/MACs
 - Hardware energy and latency
- Four categories of baselines
 - Multiplication-free NNs
 - AdderNet, DeepShift, BNN
 - CNNs
 - ResNet, SENet
 - Transformer
 - ViT, DeiT, VITAS, Autoformer
 - CNN-Transformer
 - Bot, HR-NAS, BossNAS

ShiftAddNAS: Experimental Results for NLP Tasks

BLEU scores vs. FLOPs of ShiftAddNAS over SOTA baselines on NLP tasks.

ShiftAddNAS vs. SOTA baselines in terms of accuracy and efficiency on NLP tasks.

	WMT'14 En-Fr					WMT'14 En-De					
	Params	FLOPs	BLEU	Latency	Energy	Params	FLOPs	BLEU	Latency	Energy	
Transformer	176M	10.6G	41.2	130ms	214mJ	176M	10.6G	28.4	130ms	214mJ	
Evolved Trans.	175M	10.8G	41.3	-	-	47M	2.9G	28.2	-	-	
HAT	48M	3.4G	41.4	49ms	81mJ	44M	2.7G	28.2	42ms	69mJ	
ShiftAddNAS	46M	3.0G	41.8	43ms	71mJ	ıJ 43M 2.7G 28.2		28.2	40ms	66mJ	
HAT	46M	2.9G	41.1	42ms	69mJ	36M	2.2G	27.6	34ms	56mJ	
ShiftAddNAS	41M	2.7G	41.6	39ms	64mJ	33M	2.1G	27.8	31ms	52mJ	
HAT	30M	1.8G	39.1	29ms	48mJ	25M	1.5G	25.8	24ms	40mJ	
ShiftAddNAS	29M	1.8G	40.2	16ms	45mJ	25M	1.6G	26.7	24ms	40mJ	
Lite Trans. (8-bit)	17M	1G	39.6	19ms	31mJ	17M	1G	26.5	19ms	31mJ	
ShiftAddNAS (8-bit)	11M	0.2G	41.5	11ms	16mJ	17M	0.3G	28.3	16ms	24mJ	
Lite Trans. (8-bit)	12M	0.7G	39.1	14ms	24mJ	12M	0.7G	25.6	14ms	24mJ	
ShiftAddNAS (8-bit)	10M	0.2G	41.1	10ms	15mJ	12M	0.2G	26.8	9.2ms 14mJ		

Overall Improvement on NLP

ShiftAddNAS achieves up to +2
BLEU scores improvement and 69.1% and 69.2% energy and latency savings

ShiftAddNAS: Experimental Results for CV Tasks

Co	mparison	with SO	TA base	lines on	ImageN	et cl	assificat	ion task.
----	----------	---------	---------	----------	--------	-------	-----------	-----------

Model	Top-1 Acc.	FIRS							_
	Top-I Acc.	Top-5 Acc.	Params	Res.	MACs	#Mult.	#Add	#Shift	Model Type
BNN	55.8%	78.4%	26M	224^{2}	3.9G	0.1G	3.9G	3.8G	Multfree
AdderNet	74.9%	91.7%	26M	224^{2}	3.9G	0.1G	7.6G	0	Multfree
AdderNet-PKKD	76.8%	93.3%	26M	224^{2}	3.9G	0.1G	7.6G	0	Multfree
DeepShift-Q	70.7%	90.2%	26M	224^{2}	3.9G	0.1G	3.9G	3.8G	Multfree
DeepShift-PS	71.9%	90.2%	52M	224^{2}	3.9G	0.1G	3.9G	3.8G	Multfree
ResNet-50	76.1%	92.9%	26M	224^{2}	3.9G	3.9G	3.9G	0	CNN
ResNet-101	77.4%	94.2%	45M	224^{2}	7.6G	7.6G	7.6G	0	CNN
SENet-50	79.4%	94.6%	26M	224^{2}	3.9G	3.9G	3.9G	0	CNN
SENet-101	81.4%	95.7%	45M	224^{2}	7.6G	7.6G	7.6G	0	CNN
ViT-B/16	77.9%	-	86M	384^{2}	18G	18G	17G	0	Transformer
ViT-L/16	76.5%	-	304M	384^{2}	64G	64G	63G	0	Transformer
DeiT-T	74.5%	-	6M	224^{2}	1.3G	1.3G	1.3G	0	Transformer
DeiT-S	81.2%	-	22M	224^{2}	4.6G	4.6G	4.6G	0	Transformer
VITAS	77.4%	93.8%	13M	224^{2}	2.7G	2.7G	2.7G	0	Transformer
Autoformer-S	81.7%	95.7%	23M	224^{2}	5.1G	5.1G	5.1G	0	Transformer
BoT-50	78.3%	94.2%	21M	224^{2}	4.0G	4.0G	4.0G	0	CNN + Trans.
BoT-50 + SE	79.6%	94.6%	21M	224^{2}	4.0G	4.0G	4.0G	0	CNN + Trans.
HR-NAS	77.3%	-	6.4M	224^{2}	0.4G	0.4G	0.4G	0	CNN + Trans.
BossNAS-T0	80.5%	95.0%	38M	224^{2}	3.5G	3.5G	3.5G	0	CNN + Trans.
BossNAS-T0 + SE	80.8%	95.2%	38M	224^{2}	3.5G	3.5G	3.5G	0	CNN + Trans.
ShiftAddNAS-T0	82.1%	95.8%	30M	224^{2}	3.7G	2.7G	3.8G	1.0G	Hybrid
ShiftAddNAS-T0↑	82.6%	96.2%	30M	256^{2}	4.9G	3.6G	4.9G	1.4G	Hybrid
T2T-ViT-19	81.9%	-	39M	224^{2}	8.9G	8.9G	8.9G	0	Transformer
TNT-S	81.3%	95.6%	24M	224^{2}	5.2G	5.2G	5.2G	0	Transformer
Autoformer-B	82.4%	95.7%	54M	224^{2}	11G	11G	11G	0	Transformer
BoTNet-S1-59	81.7%	95.8%	28M	224^{2}	7.3G	7.3G	7.3G	0	CNN + Trans.
BossNAS-T1	82.2%	95.8%	38M	224^{2}	8.0G	8.0G	8.0G	0	CNN + Trans.
ShiftAddNAS-T1	82.7%	96.1%	30M	224^{2}	6.4G	5.4G	6.4G	1.0G	Hybrid
ShiftAddNAS-T1↑	83.0%	96.4%	30M	256^{2}	8.5G	7.1G	8.5G	1.4G	Hybrid

Overall Improvement on CV

■ ShiftAddNAS on average offers a +0.8% ~ +7.7% higher accuracy and 24% ~ 93% energy savings

Summary

For the first time, we

- Develop ShiftAddNAS, featuring a hybrid search space that incorporates both multiplication-based and multiplication-free operators
- Propose a new heterogeneous weight sharing strategy that enables automated search for hybrid operators with heterogeneous weight distributions
- Conduct extensive experiments on both CV and NLP tasks to validate the effectiveness of our proposed ShiftAddNAS framework

Open-source Code:

https://github.com/RICE-EIC/ShiftAddNAS

