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Modeling Irregularly-Sampled Time Series
Motivation

Goal: Model a time-series x7 = [x|t € T ={to,t1, - -tN}| whose observation times

T ={to,t1,---tn} canoccur atirregular time intervals.
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Motivation

Goal: Model a time-series x7 = [x|t € T ={to,t1, - -tN}| whose observation times
T = {to,t1,---tn} canoccur atirregular time intervals.

Challenges:
» Data from continuous processes
» Noisy and partially observed inputs

» Non-linear dynamics
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Modeling Irregularly-Sampled Time Series
Motivation

Goal: Model a time-series x7 = [x|t € T ={to,t1, - -tN}| whose observation times
T = {to,t1,---tn} canoccur atirregular time intervals.

Challenges:

» Data from continuous processes > Continuous state dynamics

— Uncertainty handling

— Expressive and flexible functions

» Noisy and partially observed inputs

» Non-linear dynamics

Xto Xto Xt3

Xtq XtN
@ @ *—@ @
to 1 to t3 tN

BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

+ +

GRU LSTM

3 BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

lack
continuous

-+ <+ dynamics
GRU LSTM

3 BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

Latent ODE
NeuralCDE ye onN
lack
continuous
<+ <+ dynamics
GRU LSTM

3 BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

Latent ODE
-+ + + require
numerical
NeuralCDE ye onN
solvers
lack
continuous
<+ <+ dynamics
GRU LSTM

3 BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

lack notion of uncertainty

Latent ODE
+ 4+t
NeuralCDE ye onN
+ +
GRU LSTM

require
numerical
solvers

lack
continuous
dynamics

BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

lack notion of uncertainty

Latent ODE
+ 4+t
NeuralCDE ODE-RNN
+ +
GRU LSTM

+ Neur;f;DEs require
Latent SDE + numerical
CLPF solvers
<+ lack
+ VRNN continuous
RKN + + dynamics
DKF DVBF

BOSCH




Modeling Irregularly-Sampled Time Series

Related Work

lack notion of uncertainty

<+

NeuralCDE

-

GRU

-

ODE-RNN

<+

LSTM

Latent ODE

-

require variational approximation

+ Neur;f;DEs require
Latent SDE + numerical
CLPF solvers
<+ lack
+ VRNN continuous
RKN + + dynamics
DKF DVBF

BOSCH




Modeling Irregularly-Sampled Time Series
Related Work

Latent ODE +
+ + + Neural SDEs
+ ‘
CRU Latent SDE
NeuralCDE ODE-RNN +
CLPF
+
VRNN
+
-+ <+ RKN + +
GRU LSTM DKF DVBF

4 BOSCH




Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network

5 BOSCH




Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions

5 BOSCH




Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions
propagated in closed form

5 BOSCH




Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions
propagated in closed form, an uncertainty-driven gating mechanism

BOSCH




Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions
propagated in closed form, an uncertainty-driven gating mechanism and an architecture that is trainable
end-to-end.

BOSCH




Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions
propagated in closed form, an uncertainty-driven gating mechanism and an architecture that is trainable
end-to-end.

CRU assumes a continuous latent state Z that evolves according to a linear SDE

dz = Azdt + Gd3

with transition matrix A and diffusion coefficient G
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Continuous Recurrent Unit
Overview

Continuous Recurrent Unit (CRU) is a probabilistic recurrent network with continuous state evolutions
propagated in closed form, an uncertainty-driven gating mechanism and an architecture that is trainable
end-to-end.

CRU assumes a continuous latent state Z that evolves according to a linear SDE

dz = Azdt + Gd3

with transition matrix A and diffusion coefficient G and discrete Gaussian latent observations
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Continuous Recurrent Unit
Architecture
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Continuous Recurrent Unit
Modeling flexibility and complexity

» Increased flexibility with locally linear state transitions

K
A = Z M AR with a; = wy ().
k=1
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Continuous Recurrent Unit
Modeling flexibility and complexity

» Increased flexibility with locally linear state transitions

K
Ay = Z al AR, with a; = wy ().
k=1

» Reduced complexity with a fast implementation f-CRU

o 1600 1
3 9 —=— CRU
g 8—:1200. —— f-CRU
5
- 800
.5
@
o B 400
>
9] 4____._____——0
4: Q—( 0 fcs o 4

50 100 150 200
Dimensionality of latent state M

[

BOSCH




Continuous Recurrent Unit
Experimental study

» Best performance in 4 out of 6 comparisons

» Gating mechanism weights noisy and partially observed inputs accurately
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» Best performance in 4 out of 6 comparisons

» Gating mechanism weights noisy and partially observed inputs accurately
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Continuous Recurrent Unit
Experimental study

» Best performance in 4 out of 6 comparisons

» Gating mechanism weights noisy and partially observed inputs accurately
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