Alhabib Abbas¹, Yiannis Andreopoulos²,

¹ University College London, alhabib.abbas.13@ucl.ac.uk
² University College London, i.andreopoulos@ucl.ac.uk

July 6, 2022

Alhabib Abbas

Motivatior

PAC-Bayesiar Bounds on Noise Invariance

Concluding Results

Motivation

When are PAC Classifiers Important

- Assume we have a sensor on a car.
- If the sensor observes a human, the car should swerve and compromise itself.
- If the object is not human, the car should not swerve.
- We would like mathematical guarantees on how often the car misclassifies objects as "not human".

PAC-Bayesian Bounds on Rate-Efficient Machines

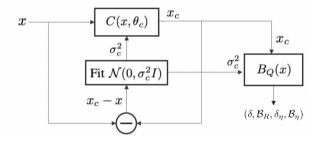
Alhabib Abbas

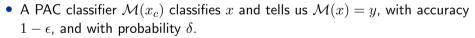
Motivation

PAC-Bayesian Bounds on Noise Invariance

When are Rate-Efficient Classifiers Important

- Distributed systems constrain processable data.
- Sensors compress inputs, introducing reconstruction noise.
- Classifier decisions are affected by noise.
- There is a tradeoff between latency and performance.
- We would like mathematical guarantees on the minimum amount of information required for accurate inference.


PAC-Bayesian Bounds on Rate-Efficient Machines


Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

Rate-Efficient PAC Classifiers

• A rate-efficient $\mathcal{M}(x_c)$ guarantees $\mathcal{M}(x) = \mathcal{M}(x_c)$, at a rate of $1 - \eta$, with probability δ_{η} .

PAC-Bayesian Bounds on Rate-Efficient Machines

Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

Concluding Results

PAC-Bayesian Bounds on Noise Invariance

Noise Invariance

PAC-Bayesian Bounds on Rate-Efficient Machines

Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

Concluding Results

Definition

For any source domain D, for any classification model \mathcal{M} , and for any noise vector $\boldsymbol{n} \sim \mathcal{N}(\boldsymbol{0}, \sigma_c^2 I)$ modelling perturbations on \boldsymbol{x} , noise invariance η^D quantifies the probability of output change due to \boldsymbol{n} :

$$\eta^{D} = \mathop{\mathbb{E}}_{\boldsymbol{x} \sim D} \Pr_{\boldsymbol{n} \sim \mathcal{N}} \left(\mathcal{M}(\boldsymbol{x}) \neq \mathcal{M}(\boldsymbol{x} + \boldsymbol{n}) \right)$$
(1)

Bounding Noise Invariance of the Majority Vote

Theorem

For any majority vote classifier defining a posterior Q over normalised linear voters $x'_i \in S \subseteq \mathcal{X}$ where $h_i(\boldsymbol{x}) = y_i x'_i \boldsymbol{x}^\top$, and when $\boldsymbol{\omega} = \mathbb{E}_{x'_i \sim Q} \mathbb{E}_{x'_j \sim Q} \boldsymbol{x}'_j \boldsymbol{x}^\top \boldsymbol{x}'_i$, invariance coefficients η^D_Q are simplified to:

$$\eta_Q^D = \mathop{\mathbb{E}}_{\boldsymbol{x} \sim D} \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{a_Q(\boldsymbol{x})}{\sqrt{\boldsymbol{\omega}\sigma_c^2 I \boldsymbol{\omega}^\top} \sqrt{2}}\right) \right]$$
(2)

PAC-Bayesian Bounds on Rate-Efficient Machines

Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

Bounding Noise Invariance of the Majority Vote

Theorem

For any source distribution D, for any prior P^2 on the hypothesis set \mathcal{H}^2 , for any posterior Q^2 learned by observing $\mathcal{S} \sim D^m$, and for any arbitrary probability $\delta_\eta \in (0, 1]$:

$$\Pr_{\mathcal{S}\sim D}\left(\mathsf{kl}(\eta_Q^{\mathcal{S}}||\eta_Q^D) \le \frac{1}{m} \left[2KL(Q||P) + \ln\frac{\xi(m)}{\delta_\eta}\right]\right) \ge 1 - \delta_\eta \tag{3}$$

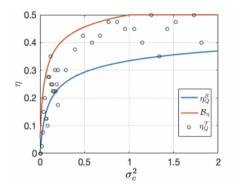
PAC-Bayesian Bounds on Rate-Efficient Machines

Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

Alhabib Abbas


Motivation

PAC-Bayesian Bounds on Noise Invariance

Concluding Results

Concluding Results

PAC-Bayesian Bounds on Rate-Efficient Machines

Alhabib Abbas

Motivation

PAC-Bayesian Bounds on Noise Invariance

- Bounds \mathcal{B}_{η} are reliable across all values of σ_c^2 .
- Symmetric noise sources necessarily saturate \mathcal{B}_{η} and η at 0.5.
- Values of σ_c^2 correlate inversely with x_c bitrates.

Alhabib Abbas

Motivation

PAC-Bayesiar Bounds on Noise Invariance

Concluding Results

Thank You