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When are PAC Classifiers Important

• Assume we have a sensor on a car.

• If the sensor observes a human, the car should swerve and compromise itself.

• If the object is not human, the car should not swerve.

• We would like mathematical guarantees on how often the car
misclassifies objects as ”not human”.
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When are Rate-Efficient Classifiers Important

• Distributed systems constrain processable data.

• Sensors compress inputs, introducing reconstruction noise.

• Classifier decisions are affected by noise.

• There is a tradeoff between latency and performance.

• We would like mathematical guarantees on the minimum amount of
information required for accurate inference.
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Rate-Efficient PAC Classifiers

• A PAC classifier M(xc) classifies x and tells us M(x) = y, with accuracy
1− ϵ, and with probability δ.

• A rate-efficient M(xc) guarantees M(x) = M(xc), at a rate of 1− η, with
probability δη.
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Noise Invariance

Definition
For any source domain D, for any classification model M, and for any noise vector
n ∼ N (0, σ2

c I) modelling perturbations on x, noise invariance ηD quantifies the
probability of output change due to n:

ηD = E
x∼D

Pr
n∼N

(
M(x) ̸= M(x+ n)

)
(1)
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Bounding Noise Invariance of the Majority Vote

Theorem
For any majority vote classifier defining a posterior Q over normalised linear voters
x′i ∈ S ⊆ X where hi(x) = yix

′
ix

⊤, and when ω = Ex′
i∼Q Ex′

j∼Q x′
jx

⊤x′
i,

invariance coefficients ηDQ are simplified to:

ηDQ = E
x∼D

1

2

[
1 + erf

(
aQ(x)√

ωσ2
c Iω

⊤
√
2

)]
(2)
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Bounding Noise Invariance of the Majority Vote

Theorem
For any source distribution D, for any prior P 2 on the hypothesis set H2, for any
posterior Q2 learned by observing S ∼ Dm, and for any arbitrary probability
δη ∈ (0, 1]:

Pr
S∼D

(
kl(ηSQ||ηDQ ) ≤ 1

m

[
2KL(Q||P ) + ln

ξ(m)

δη

])
≥ 1− δη (3)
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Concluding Results

• Bounds Bη are reliable across all values of σ2
c .

• Symmetric noise sources necessarily saturate Bη and η at 0.5.

• Values of σ2
c correlate inversely with xc bitrates.
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Thank You
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