Probabilistic ODE Solutions in Millions of Dimensions

Nico Krämer*

Nathanael Bosch*

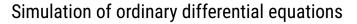
Jonathan Schmidt*

Philipp Hennig

* Equal contribution

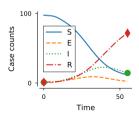
June 27, 2022

Faculty of Science
Department of Computer Science
Chair for the Methods of Machine Learning

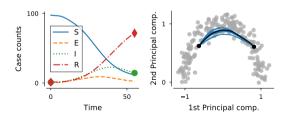


$$ightharpoonup$$
 ODE: $\dot{y}(t) = f(y(t), t)$, $y(t_0) = y_0 \in \mathbb{R}^d$

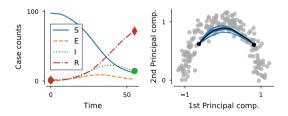
- ▶ ODE: $\dot{y}(t) = f(y(t), t), \ y(t_0) = y_0 \in \mathbb{R}^d$
- ► Applications *all over the natural sciences*: biology, geosciences, fluid dynamics, ...



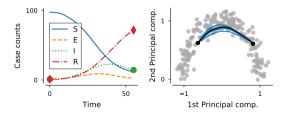
- ▶ ODE: $\dot{y}(t) = f(y(t), t), \ y(t_0) = y_0 \in \mathbb{R}^d$
- ► Applications *all over the natural sciences*: biology, geosciences, fluid dynamics, ...
- ► Applications *all over machine learning:* neural {0, S, P}DEs, PINNs, ...

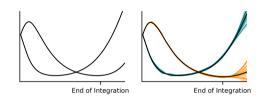


- ▶ ODE: $\dot{y}(t) = f(y(t), t), \ y(t_0) = y_0 \in \mathbb{R}^d$
- ► Applications *all over the natural sciences*: biology, geosciences, fluid dynamics, ...
- ► Applications *all over machine learning:* neural {0, S, P}DEs, PINNs, ...
- ▶ Many dimensions, $d \gg 100$. Think: $d \sim 10^6$



- ▶ ODE: $\dot{y}(t) = f(y(t), t), \ y(t_0) = y_0 \in \mathbb{R}^d$
- ► Applications *all over the natural sciences*: biology, geosciences, fluid dynamics, ...
- ► Applications all over machine learning: neural {0, S, P}DEs, PINNs, ...
- ▶ Many dimensions, $d \gg 100$. Think: $d \sim 10^6$



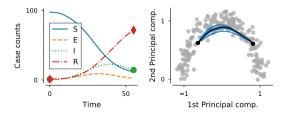


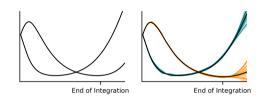
► Any approximation of the posterior distribution

$$p\left(y \mid \{\dot{y}(t_n) = f(y(t_n), t_n)\}_{n=0}^N, y(t_0) = y_0\right)$$

approximately solves the ODE

- ▶ ODE: $\dot{y}(t) = f(y(t), t), \ y(t_0) = y_0 \in \mathbb{R}^d$
- ► Applications *all over the natural sciences*: biology, geosciences, fluid dynamics, ...
- ► Applications all over machine learning: neural {0, S, P}DEs, PINNs, ...
- ▶ Many dimensions, $d \gg 100$. Think: $d \sim 10^6$





► Any approximation of the posterior distribution

$$\rho\left(y\mid \{\dot{y}(t_n)=f(y(t_n),t_n)\}_{n=0}^N, y(t_0)=y_0\right)$$

approximately solves the ODE

ightharpoonup Complexity $O(d^3)$ per step **!!**

Theorem (Kronecker; simplified)

If the ν th-order prior has Kronecker structure, a single step with the prob. ODE solver costs $O(\nu^3 + d\nu^2)$ in float-ops and $O(d\nu + d^2 + \nu^2)$ in memory.

Theorem (Kronecker; simplified)

If the ν th-order prior has Kronecker structure, a single step with the prob. ODE solver costs $O(\nu^3 + d\nu^2)$ in float-ops and $O(d\nu + d^2 + \nu^2)$ in memory.

Theorem (Independence; simplified)

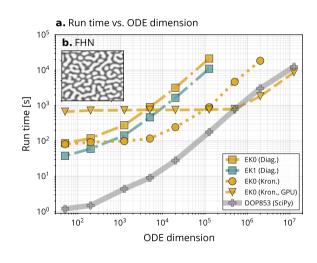
If the ν th-order prior independent prior dimensions, a single step with the prob. ODE solver costs $O(d\nu^3)$ in float-ops and $O(d\nu^2)$ in memory.

Theorem (Kronecker; simplified)

If the ν th-order prior has Kronecker structure, a single step with the prob. ODE solver costs $O(\nu^3 + d\nu^2)$ in float-ops and $O(d\nu + d^2 + \nu^2)$ in memory.

Theorem (Independence; simplified)

If the ν th-order prior independent prior dimensions, a single step with the prob. ODE solver costs $O(d\nu^3)$ in float-ops and $O(d\nu^2)$ in memory.



► Structured state spaces accelerate ODE solvers

- ► Structured state spaces accelerate ODE solvers
- ► Simulation of millions of dimensions

- ► Structured state spaces accelerate ODE solvers
- ► Simulation of millions of dimensions
- ► Simulation of PDEs and more

- ▶ Structured state spaces accelerate ODE solvers
- ► Simulation of millions of dimensions
- ► Simulation of PDEs and more

Nico Krämer (@pnkraemer)

Nathanael Bosch (@NathanaelBosch)

Jonathan Schmidt

Philipp Hennig (@PhilippHennig5)

▶ Structured state spaces accelerate ODE solvers

► Simulation of millions of dimensions

➤ Simulation of PDEs and more

Nico Krämer (@pnkraemer)

Nathanael Bosch (@NathanaelBosch)

Jonathan Schmidt

Philipp Hennig (@PhilippHennig5)

Software: https://github.com/pnkraemer/tornadox

pip install tornadox

Paper: https://arxiv.org/abs/2110.11812

Come and talk to us. Visit the poster.

Experiment code