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> ODEy(1) = f(y(1),1), ¥(to) = Yo € R?
» Applications all over the natural sciences:
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» Applications all over machine learning:
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» Many dimensions, d > 100. Think: d ~ 108
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Case counts
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: , approximately solves the ODE
_1lst Principal compA1 » Comp/E’X/fy O(dS) per step 2%
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Solution: more structure in the state space

Theorem (Kronecker; simplified)

If the vth-order prior has Kronecker structure, a
single step with the prob. ODE solver costs
O(v® + dv?) in float-ops and

O(dv + d? + v?) in memory.
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If the vth-order prior has Kronecker structure, a
single step with the prob. ODE solver costs
O(v® + dv?) in float-ops and

O(dv + d? + v?) in memory.

Theorem (Independence; simplified)

If the vth-order prior independent prior
dimensions, a single step with the prob. ODE
solver costs O(dv®) in float-ops and O(dv?) in
memory.

© Nico Kramer, 2022, Twitter, Github: @pnkraemer



Solution: more structure in the state space

a. Run time vs. ODE dimension

Theorem (Kronecker; simplified) gl &-ssir
If the vth-order prior has Kronecker structure, a ~ 0 (©}
single step with the prob. ODE solver costs ot = ° 9
O(v® + dv?) in float-ops and _ llof - g
O(dv + d? + v2) in memory. é 0 = —¥ M-y — - F
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Theorem (Independence; simplified) Rt # & w00
If the vth-order prior independent prior * - o
dimensions, a single step with the prob. ODE ' o0 L fls DOPBS3 (SciPy)
solver costs O(dv®) in float-ops and O(dv?) in e e e e e o
memaory. ODE dimension
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Conclusion
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Software: https://github.com/pnkraemer/tornadox

pip install tornadox

Paper: https://arxiv.org/abs/2110.11812

Come and talk to us. Visit the poster. Experiment code
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