

FriendlyCore: Tool for Differentially Private Aggregation

Eliad Tsfadia

Joint with: Edith Cohen, Haim Kaplan, Yishay
Mansour, Uri Stemmer

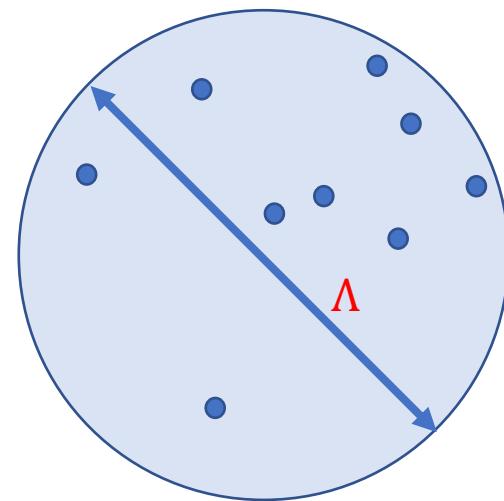
DP Averaging

DP Averaging

Input: Points $D \in (\mathbb{R}^d)^n$ in a ball of diameter Λ

Output: $\text{Avg}(D) + \text{Noise}$

Noise $\propto \Lambda$

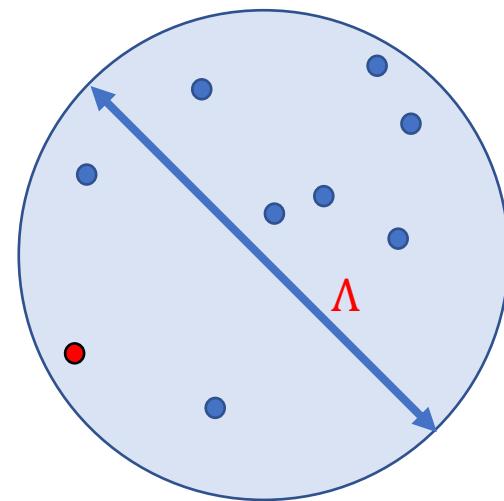


DP Averaging

Input: Points $D \in (\mathbb{R}^d)^n$ in a ball of diameter Λ

Output: $\text{Avg}(D) + \text{Noise}$

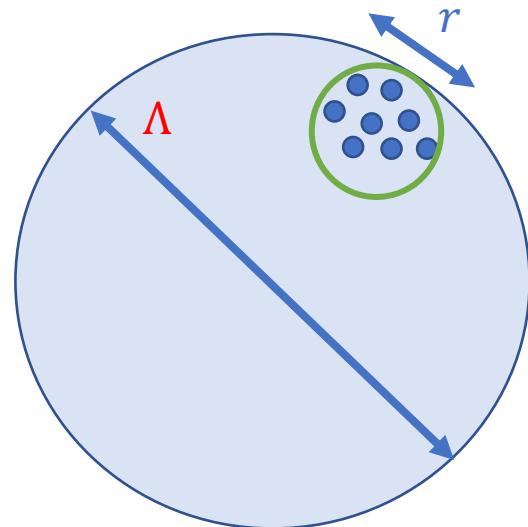
Noise $\propto \Lambda$



DP Averaging

Suppose D has diameter $r \ll \Lambda$

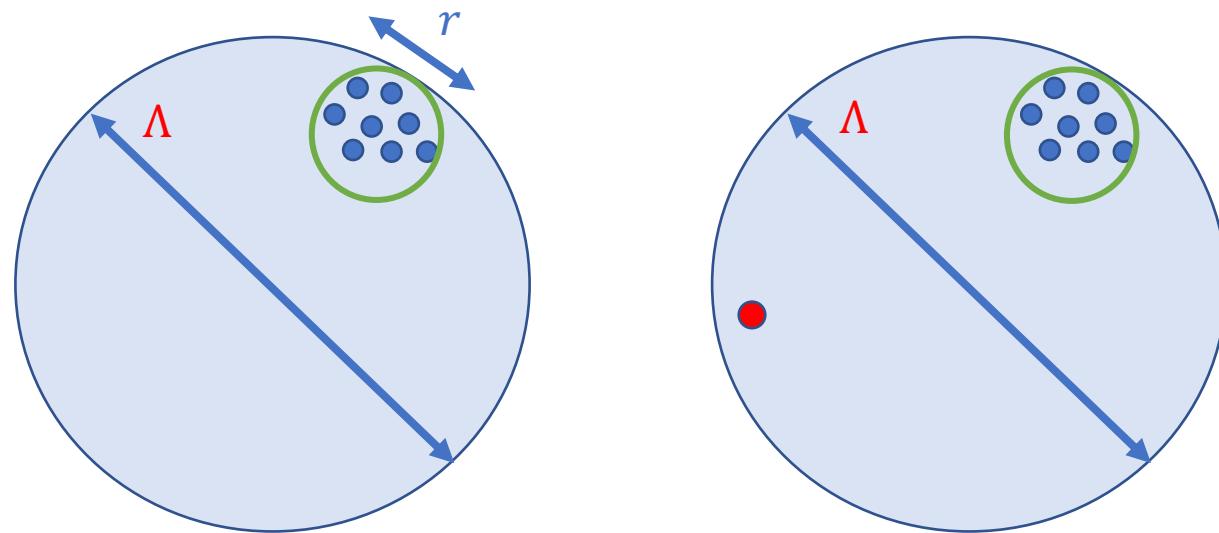
Wish: Replace $\Lambda \leftarrow r$ in $Noise \Rightarrow \times \Lambda/r$ to gain in accuracy



DP Averaging

Suppose D has diameter $r \ll \Lambda$

Wish: Replace $\Lambda \leftarrow r$ in $Noise \Rightarrow \times \Lambda/r$ to gain in accuracy



With DP: (almost) same output

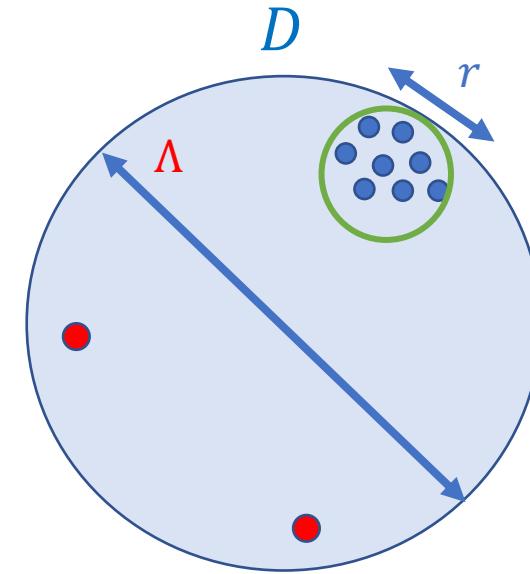
FriendlyCore Paradigm

Input:

- Dataset D of points

Operation:

$$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$$



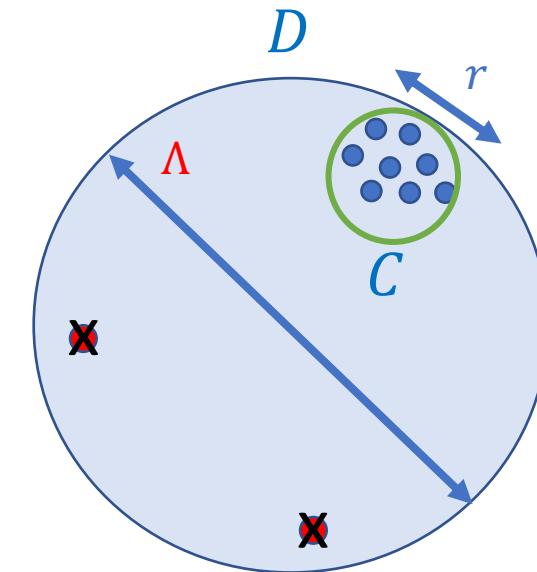
FriendlyCore Paradigm

Input:

- Dataset D of points

Operation:

$$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$$



FriendlyCore Paradigm

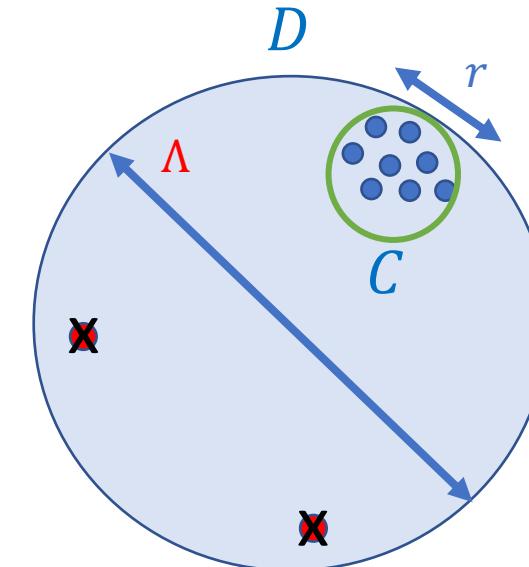
Input:

- Dataset D of points

Operation:

$$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$$

GUARANTEE
 C is ``friendly''



FriendlyCore Paradigm

Input:

- Dataset D of points

Operation:

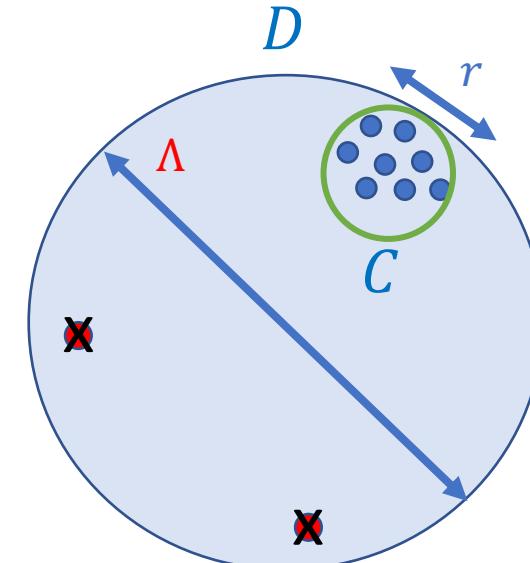
$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$

Output: $A(C)$

A is “friendly” DP algorithm
(weaker notion of privacy)

GUARANTEE

C is “friendly”



FriendlyCore Paradigm

Input:

- Dataset D of points

Operation:

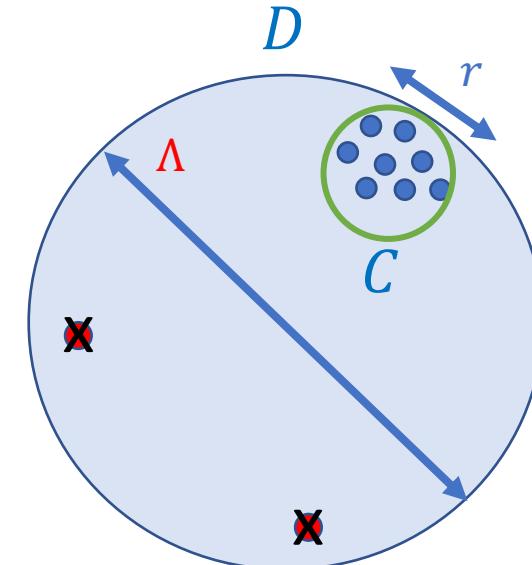
$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$

Output: $A(C)$

A is “friendly” DP algorithm
(weaker notion of privacy)

GUARANTEE

C is “friendly”



Averaging example:

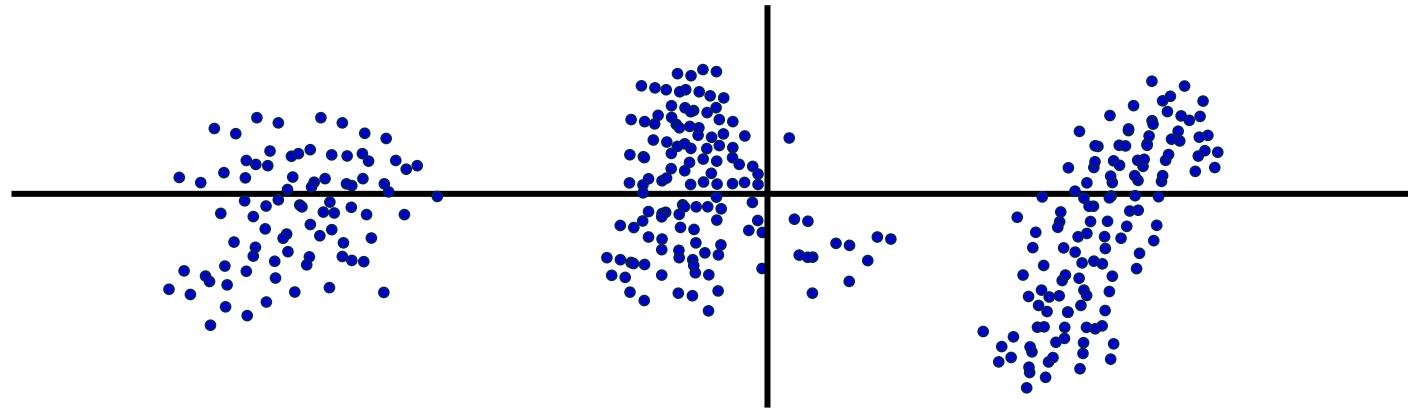
friendly $C \Rightarrow$ has diameter $r \ll \Lambda$

friendly DP $A \Rightarrow$ add noise $\propto r$

Clustering

Clustering

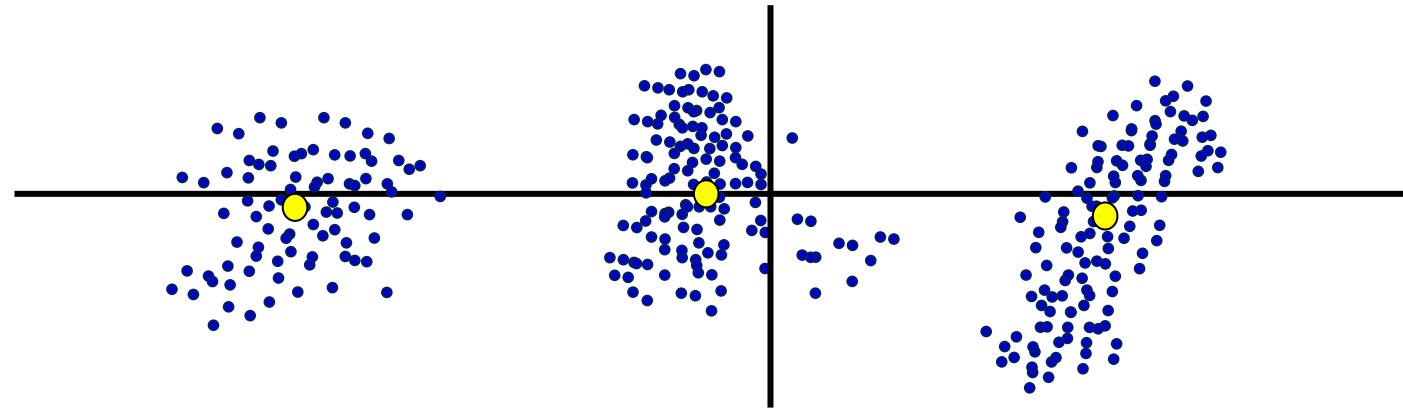
Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k



Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Goal: Output centers $C = (c_1, \dots, c_k)$ (e.g., minimize the k -means cost):

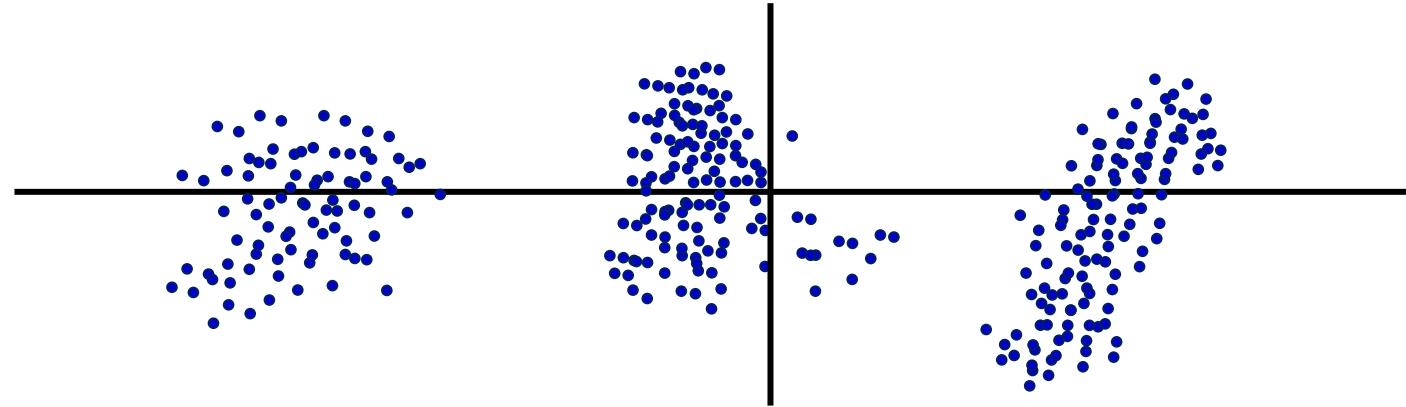


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.

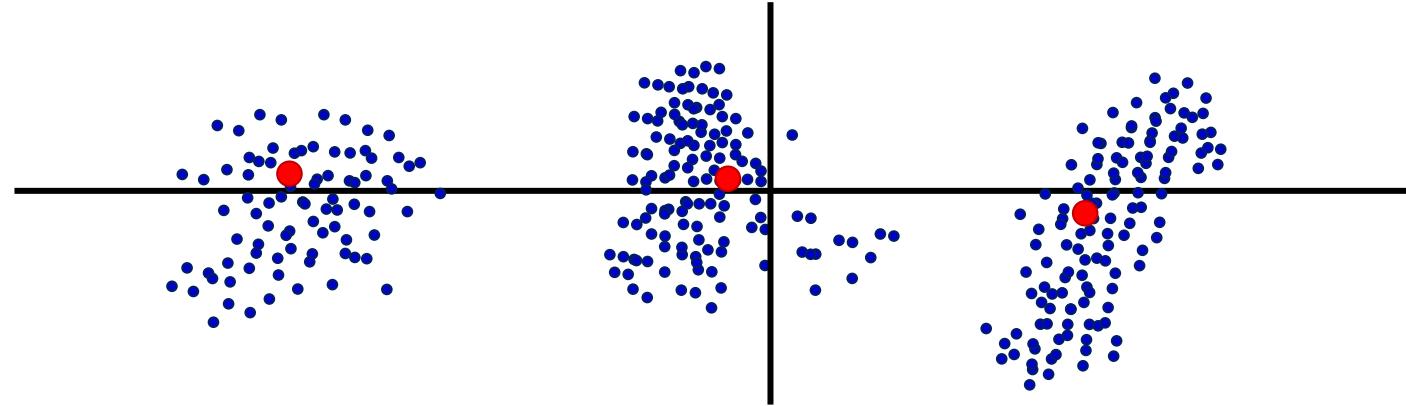


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.

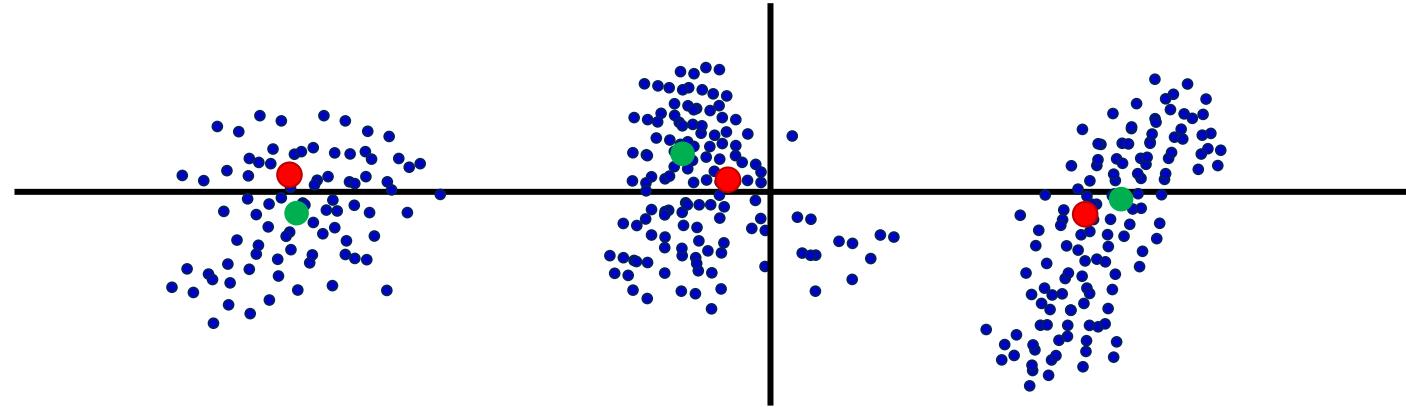


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.

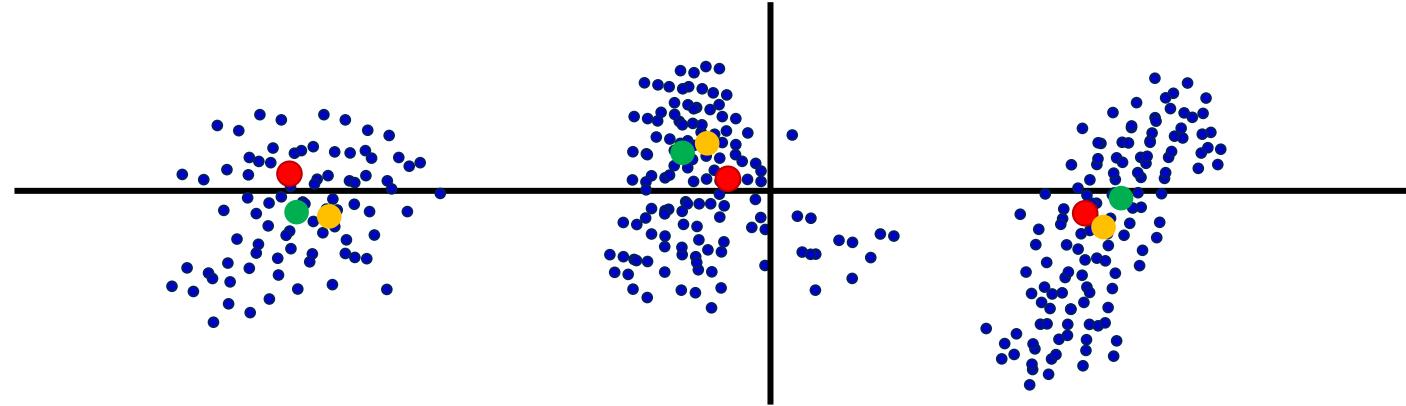


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.

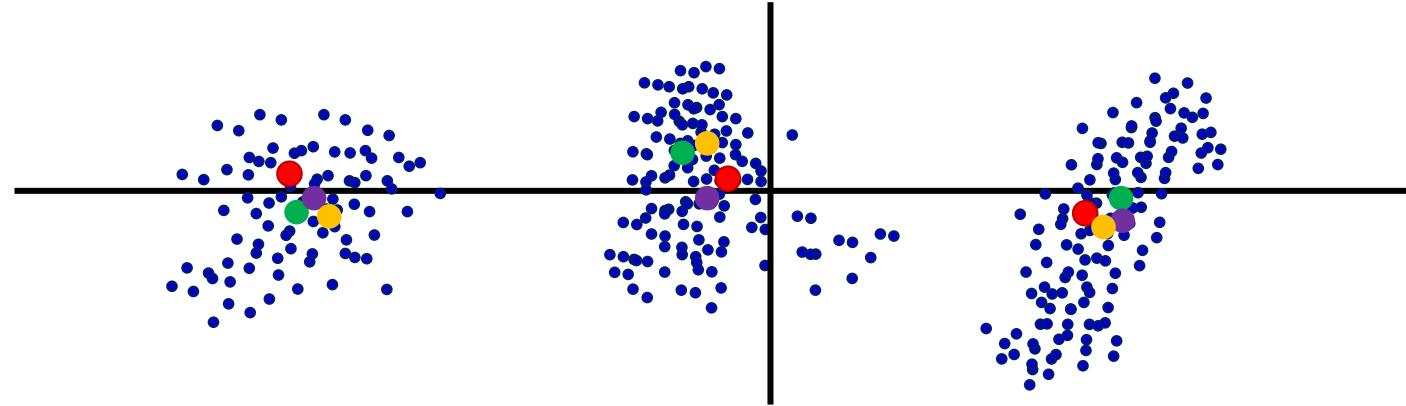


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.

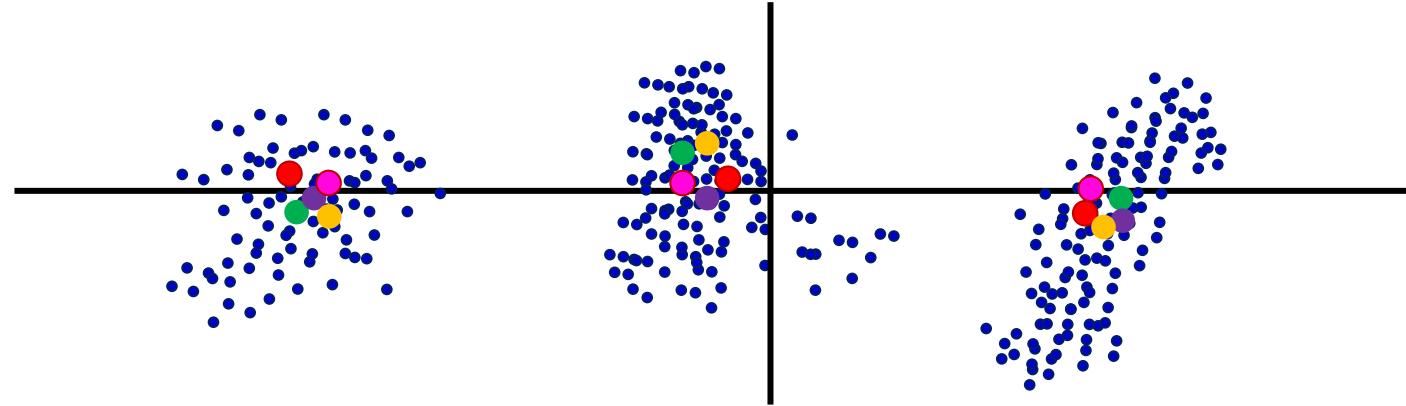


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.

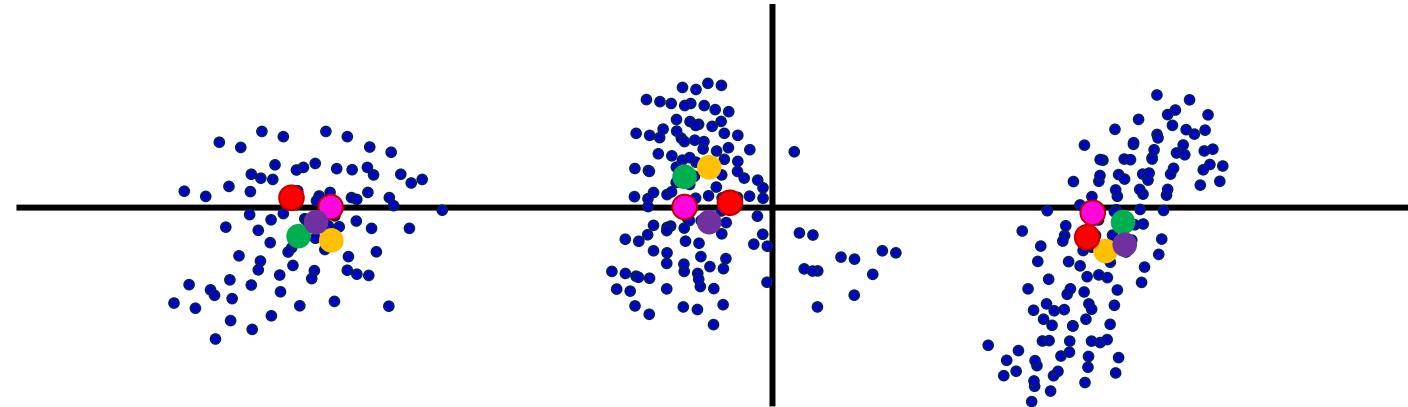


Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.



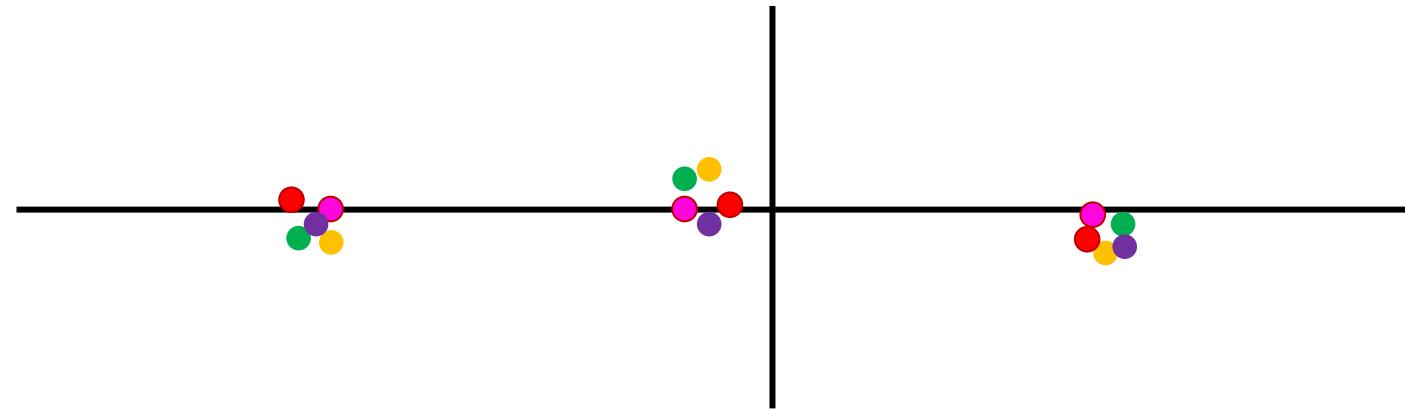
k -tuple Clustering [Cohen et al. 21]

Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.



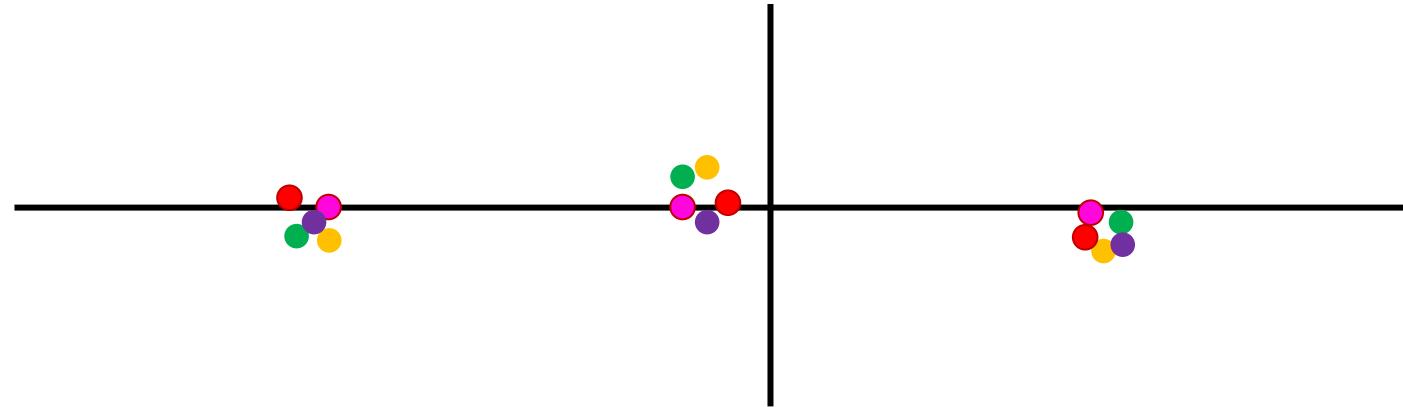
k -tuple Clustering [Cohen et al. 21]

Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.



k -tuple Clustering [Cohen et al. 21]

Input: *unordered* k -tuples $\{Y_1, \dots, Y_m\} \in ((\mathbb{R}^d)^k)^m$

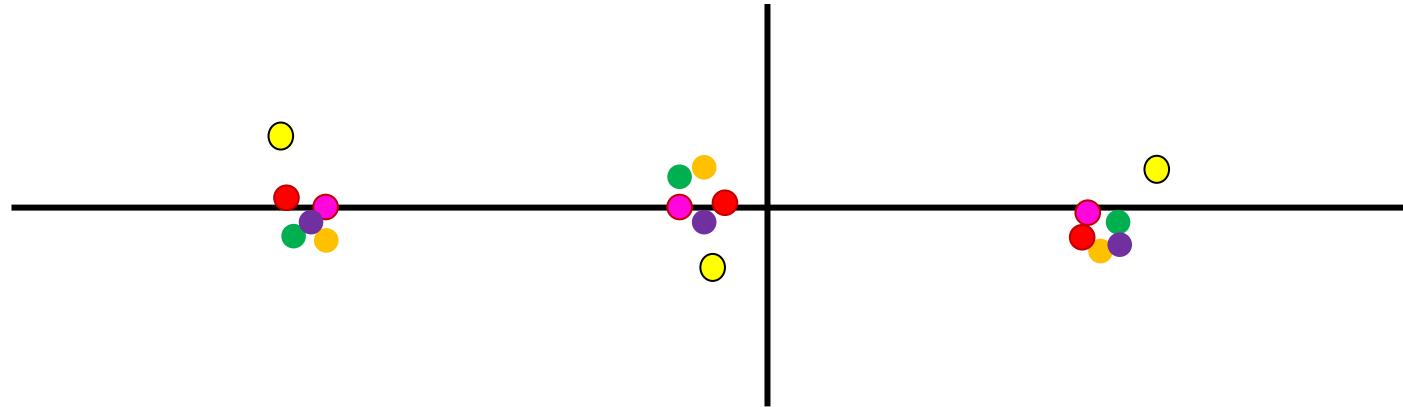
Goal: **Privately** identify a new k -tuple that is ``close'' to them.

Clustering

Input: Data points $D = \{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n$ and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 07] (2) Execute some non-private algorithm in each subset.



k -tuple Clustering [Cohen et al. 21]

Input: *unordered* k -tuples $\{Y_1, \dots, Y_m\} \in ((\mathbb{R}^d)^k)^m$

Goal: **Privately** identify a new k -tuple that is ``close'' to them.

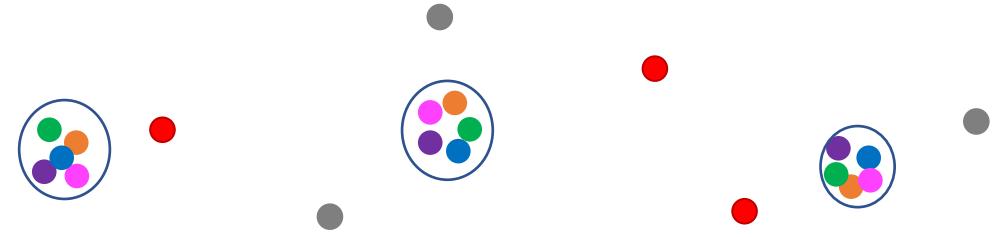
FriendlyCore Paradigm

Input:

- Dataset D of k -tuples

Operation:

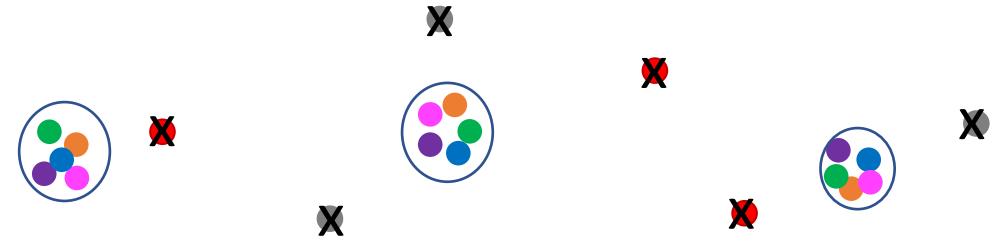
$$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$$



FriendlyCore Paradigm

Input:

- Dataset D of k -tuples

Operation:
$$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$$


friendly $C \Rightarrow$ tuples close to each other

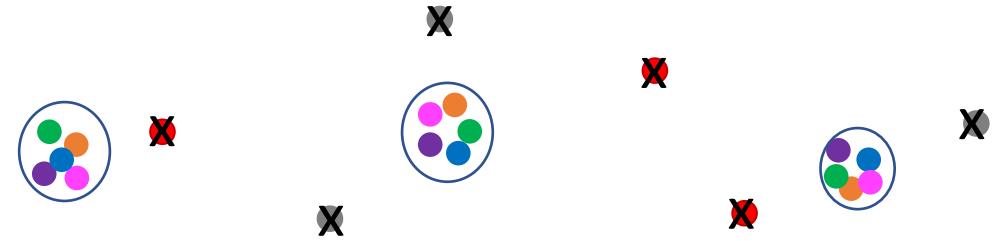
FriendlyCore Paradigm

Input:

- Dataset D of k -tuples

Operation:
$$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$$

Output: $A(C)$ (*friendly* DP A)



friendly $C \Rightarrow$ tuples close to each other

FriendlyCore Paradigm

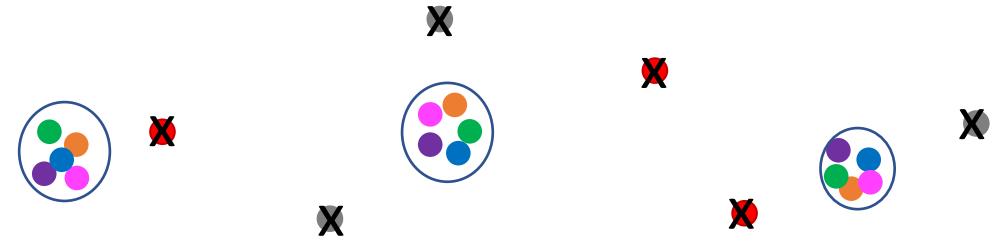
Input:

- Dataset D of k -tuples

Operation:

$C \leftarrow \text{FriendlyCore}(D) \quad (C \subseteq D)$

Output: $A(C)$ (*friendly* DP A)



friendly $C \Rightarrow$ tuples close to each other

friendly DP $A \Rightarrow$ very simple clustering

FriendlyCore

- Simple, Generic and Practical Algorithm

FriendlyCore

- Simple, Generic and Practical Algorithm

Utility:

- If all elements in D are “close” to each other:

$$\text{FriendlyCore}(D) = D$$

FriendlyCore

- Simple, Generic and Practical Algorithm

Utility:

- If all elements in D are “close” to each other:

$$\text{FriendlyCore}(D) = D$$

Privacy:

- If A is *friendly* (ε, δ) -DP, then
 $A(\text{FriendlyCore}(\cdot))$ is $\approx (2\varepsilon, 2e^{3\varepsilon}\delta)$ -DP

FriendlyCore

- Simple, Generic and Practical Algorithm

Utility:

- If all elements in D are “close” to each other:

$$\text{FriendlyCore}(D) = D$$

Privacy:

- If A is *friendly* (ε, δ) -DP, then
 $A(\text{FriendlyCore}(\cdot))$ is $\approx (2\varepsilon, 2e^{3\varepsilon}\delta)$ -DP

➤ Also, zCDP version

Summary

Summary

- **FriendlyCore**: tool for private aggregation tasks
 - Example Applications: averaging (optimal asymptotic) and clustering
Also, learning *unrestricted* covariance matrix of a Gaussian.

Summary

- **FriendlyCore**: tool for private aggregation tasks
 - Example Applications: averaging (optimal asymptotic) and clustering
Also, learning *unrestricted* covariance matrix of a Gaussian.
- Empirical evaluations:
 - Averaging: Comparison with CoinPress [Biswas et al. 20]
 - Clustering: Comparison with [Chang Kamath 21]

Summary

- **FriendlyCore**: tool for private aggregation tasks
 - Example Applications: averaging (optimal asymptotic) and clustering
Also, learning *unrestricted* covariance matrix of a Gaussian.
- Empirical evaluations:
 - Averaging: Comparison with CoinPress [Biswas et al. 20]
 - Clustering: Comparison with [Chang Kamath 21]

Thank you!