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With DP:  (almost) same output
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FriendlyCore Paradigm
Input:
• Dataset 𝐷 of points 

Operation:
𝐶 ← FriendlyCore 𝐷 (𝐶 ⊆ 𝐷)
Output: 𝐴(𝐶)

𝐴 is ``friendly’’ DP algorithm 
(weaker notion of privacy)

Averaging example:
friendly 𝐶 ⇒ has diameter 𝑟 ≪ Λ
friendly DP 𝐴 ⇒ add noise ∝ 𝑟
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Input: Data points  𝐷 = {𝑥#, … , 𝑥$} ∈ ℝ%
$

and parameter  𝑘

Goal: Output centers 𝐶 = (𝑐#, … , 𝑐&) (e.g., minimize the 𝑘 -means cost):
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Sample and Aggregate:  (1)  Randomly split 𝐷 into 𝑚 subsets 

[Nissim, Raskhodnikova, Smith 07] (2)  Execute some non-private algorithm in each subset.
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Input:
• Dataset 𝐷 of 𝑘-tuples

Operation:
𝐶 ← FriendlyCore 𝐷 (𝐶 ⊆ 𝐷) friendly 𝐶 ⇒ tuples close to each other
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friendly DP 𝐴⇒ very simple clusteringOutput: 𝐴(𝐶) (friendly DP 𝐴)
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FriendlyCore
• Simple, Generic and Practical Algorithm

Utility:
• If all elements in 𝐷 are “close” to each other:

FriendlyCore 𝐷 = 𝐷

Privacy:

• If 𝐴 is friendly (𝜀, 𝛿)-DP, then
𝐴 FriendlyCore ⋅ is ≈ (2𝜀, 2𝑒*+𝛿)-DP

Ø Also, zCDP version
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Thank you!


