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Input: Points D € (]Rd)n in a ball of diameter A
Output: Avg(D) + Noise

Noise o< A
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DP Averaging

Suppose D has diameterr K A
Wish: Replace A < rin Noise = X A/r to gainin accuracy
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With DP: (almost) same output
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FriendlyCore Paradigm

Input: D )
* Dataset D of points \
Operation: j

C < FriendlyCore(D) (C <€ D) GUARRMNTEE

Output: A(C) C is friendly”

A is “friendly”” DP algorithm
(weaker notion of privacy)

Averaging example:
friendly € = has diameterr < A
friendly DP A = add noise o r
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Clustering

Input: Data points D = {xq, ..., x,} € (IR{d)n and parameter k
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Clustering

Input: Data points D = {xq, ..., x,} € (IR{d)n and parameter k

Goal: Output centers C = (¢4, ..., ) (e.g., minimize the k -means cost):
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Clustering

Input: Data points D = {xq, ..., Xx,} € (IR{d)n and parameter k

Sample and Aggregate:

(1) Randomly split D into m subsets

(2) Execute some non-private algorithm in each subset.
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Clustering

Input: Data points D = {xq, ..., Xx,} € (]Rd)n and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 071  (2) Execute some non-private algorithm in each subset.
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Clustering

Input: Data points D = {xq, ..., Xx,} € (]Rd)n and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

[Nissim, Raskhodnikova, Smith 071  (2) Execute some non-private algorithm in each subset.
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Clustering

Input: Data points D = {xq, ..., Xx,} € (IR%d)n and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

(2) Execute some non-private algorithm in each subset.
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k-tuple Clustering




Clustering

Input: Data points D = {xq, ..., Xx,} € (IR{d)n and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

(2) Execute some non-private algorithm in each subset.
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Clustering

Input: Data points D = {xq, ..., Xx,} € (IR%d)n and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

(2) Execute some non-private algorithm in each subset.

r: = 5

k-tuple Clustering

k m
Input: unordered k-tuples {Yy, ..., Y} € ((Rd) )

Goal: Privately identify a new k-tuple that is “"close’” to them.




Clustering

Input: Data points D = {xq, ..., Xx,} € (IR%d)n and parameter k

Sample and Aggregate: (1) Randomly split D into m subsets

(2) Execute some non-private algorithm in each subset.
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k-tuple Clustering

k m
Input: unordered k-tuples {Yy, ..., Y} € ((Rd) )

Goal: Privately identify a new k-tuple that is “"close’” to them.




FriendlyCore Paradigm

Input:
» Dataset D of k-tuples

Operation:
C « FriendlyCore(D) (C € D)
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FriendlyCore Paradigm

Input:
» Dataset D of k-tuples

Operation:
C < FriendlyCore(D) (C € D)

Output: A(C) (friendly DP A)
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friendly C = tuples close to each other

friendly DP A = very simple clustering
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FriendlyCore

* Simple, Generic and Practical Algorithm

Utility:

e Ifall elementsin D are “close” to each other:
FriendlyCore(D) = D

Privacy:

* If Ais friendly (¢,0)-DP, then
A(FriendlyCore(-)) is ~ (2¢, 2e3¢5)-DP

» Also, zCDP version
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Thank youl!



