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• Many scientific/technological endeavors involve learning from data.
• Datasets may include highly sensitive information about individuals.
• Can we learn properties of data without revealing sensitive info?
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Differential Privacy

• Provably ensures that no data point has its privacy compromised.
• A randomized algorithm acting on a dataset ଵ ଶ ௡ is 

-differentially private ( -DP) if for any two adjacent
datasets (i.e., only one data point changes) and any subset ,
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• This means that conditioned on seeing any output, we won’t know if 

any individual data point ௜ was in fact some other data point ௜
ᇱ.

• In general, think of as a small constant (e.g., ), and as 
cryptographically small ( ି଺଴).
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User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).
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Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).
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Our Results
• Theorem: Let be a distribution over ௗ, concentrated in a ball of 

radius (around an unknown location) and mean . Given 
ଵ

ఌ

ଵ

ఋ
users and samples per user, there is an -user 

level DP algorithm that, if each sample were i.i.d. from , estimates 
up to error .

• Our algorithm runs in almost linear time in and . Our algorithm 
also works in the robust setting if even of all users have all their 
samples corrupted (but the rest of the users have all samples intact).

• Algorithm can be applied to various learning problems (learning 
discrete distributions, stochastic convex optimization, etc.).
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Our Results (pt 2)

• We also show a tight trade-off between number of users , number 
of samples per user , and the overall error in estimating .

• Answers a conjecture of Amin et al. (ICML 2019) asking about this 
user-sample tradeoff.

• Also improves over previous work of Liu et al. (NeurIPS 2020) and 

Levy et al. (NeurIPS 2021) which required ଵ
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Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .
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• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .
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Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ
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Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .
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A few caveats

• Rejection sampling may still be slow in certain cases, namely when 
not all points are close together.

• In this setting, however: not necessary to output an accurate answer.
• Fix (attempt 1): stop rejection sampling after some rounds. 

Unfortunately, this method may no longer be private.

• Fix: stop after rounds, for ୪୭୥ ௡ ௢ ଵ . Allows for 
algorithm to be both fast and maintains privacy!
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Conclusion

• We obtain an optimal user-level private algorithm for -dimensional 
mean estimation. It only requires ଵ

ఌ

ଵ

ఋ
users.

• Our algorithm improves over previous methods, which required the 
number of users to depend at least on .

• Algorithm based on modifying exponential mechanism with garbage 
bucket, and rejection sampling techniques.
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Thanks for attending!

Questions?


