# Tight and Robust Private Mean Estimation with Few Users

Hossein Esfandiari, Vahab Mirrokni, **Shyam Narayanan**International Conference on Machine Learning (ICML), 2022

1) Introduction

- 1) Introduction
- 2) Results

- 1) Introduction
- 2) Results
- 3) Overview of Algorithm

• Many scientific/technological endeavors involve learning from data.



- Many scientific/technological endeavors involve learning from data.
- Datasets may include highly sensitive information about individuals.



- Many scientific/technological endeavors involve learning from data.
- Datasets may include highly sensitive information about individuals.
- Can we learn properties of data without revealing sensitive info?



• Provably ensures that no data point has its privacy compromised.

- Provably ensures that no data point has its privacy compromised.
- A randomized algorithm  $\mathcal{A}$  acting on a dataset  $X = \{X_1, X_2, ..., X_n\}$  is  $(\varepsilon, \delta)$ -differentially private  $((\varepsilon, \delta)$ -DP) if for any two adjacent datasets X, X' (i.e., only one data point changes) and any subset S,

- Provably ensures that no data point has its privacy compromised.
- A randomized algorithm  $\mathcal{A}$  acting on a dataset  $X = \{X_1, X_2, ..., X_n\}$  is  $(\varepsilon, \delta)$ -differentially private  $((\varepsilon, \delta)$ -DP) if for any two adjacent datasets X, X' (i.e., only one data point changes) and any subset S,  $e^{-\varepsilon} \cdot \mathbb{P}(\mathcal{A}(X) \in S) \delta \leq \mathbb{P}(\mathcal{A}(X') \in S) \leq e^{\varepsilon} \cdot \mathbb{P}(\mathcal{A}(X) \in S) + \delta$ .

- Provably ensures that no data point has its privacy compromised.
- A randomized algorithm  $\mathcal{A}$  acting on a dataset  $X = \{X_1, X_2, ..., X_n\}$  is  $(\varepsilon, \delta)$ -differentially private  $((\varepsilon, \delta)$ -DP) if for any two adjacent datasets X, X' (i.e., only one data point changes) and any subset S,  $e^{-\varepsilon} \cdot \mathbb{P}(\mathcal{A}(X) \in S) \delta \leq \mathbb{P}(\mathcal{A}(X') \in S) \leq e^{\varepsilon} \cdot \mathbb{P}(\mathcal{A}(X) \in S) + \delta$ .
- This means that conditioned on seeing any output, we won't know if any individual data point  $X_i$  was in fact some other data point  $X_i'$ .

• Our goal is not to protect the privacy of a data point, but rather to protect the privacy of each **user** who contributes data points.

• Our goal is not to protect the privacy of a data point, but rather to protect the privacy of each **user** who contributes data points.



- Our goal is not to protect the privacy of a data point, but rather to protect the privacy of each **user** who contributes data points.
- Users may contribute more than one data point!



- Our goal is not to protect the privacy of a data point, but rather to protect the privacy of each **user** who contributes data points.
- Users may contribute more than one data point!



• n users each with m samples  $\{X_{i,j}\}_{j=1}^{m}$ . Adjacent: data of at most one user changes (but **all** the samples of that user may change).

- n users each with m samples  $\{X_{i,j}\}_{j=1}^{m}$ . Adjacent: data of at most one user changes (but all the samples of that user may change).
- Main question: How much more difficult is ensuring user-level privacy as opposed to item-level privacy?

- n users each with m samples  $\{X_{i,j}\}_{j=1}^{m}$ . Adjacent: data of at most one user changes (but **all** the samples of that user may change).
- Main question: How much more difficult is ensuring user-level privacy as opposed to item-level privacy?
- Setting with very few users (but perhaps many samples per user):

- n users each with m samples  $\{X_{i,j}\}_{j=1}^m$ . Adjacent: data of at most one user changes (but all the samples of that user may change).
- Main question: How much more difficult is ensuring user-level privacy as opposed to item-level privacy?
- Setting with very few users (but perhaps many samples per user):
  - Analyzing rare situation (such as understanding Covid-19 in early days).



- n users each with m samples  $\{X_{i,j}\}_{j=1}^{m}$ . Adjacent: data of at most one user changes (but **all** the samples of that user may change).
- Main question: How much more difficult is ensuring user-level privacy as opposed to item-level privacy?
- Setting with very few users (but perhaps many samples per user):
  - Analyzing rare situation (such as understanding Covid-19 in early days).
  - Analyzing local information (such as information of each hospital separately).





• One of the simplest learning problems.

- One of the simplest learning problems.
- Given a distribution  $\mathcal{D}$  over  $\mathbb{R}^d$ , compute the mean  $\mu = \mathbb{E}[\mathcal{D}]$ .

- One of the simplest learning problems.
- Given a distribution  $\mathcal{D}$  over  $\mathbb{R}^d$ , compute the mean  $\mu = \mathbb{E}[\mathcal{D}]$ .
- Fundamental subroutine in extremely wide array of learning algos.

- One of the simplest learning problems.
- Given a distribution  $\mathcal{D}$  over  $\mathbb{R}^d$ , compute the mean  $\mu = \mathbb{E}[\mathcal{D}]$ .
- Fundamental subroutine in extremely wide array of learning algos.
- In our setting, we suppose each of n users outputs m i.i.d. samples from  $\mathcal{D}$ . Goal is to estimate  $\mu$  with user-level DP.

- One of the simplest learning problems.
- Given a distribution  $\mathcal{D}$  over  $\mathbb{R}^d$ , compute the mean  $\mu = \mathbb{E}[\mathcal{D}]$ .
- Fundamental subroutine in extremely wide array of learning algos.
- In our setting, we suppose each of n users outputs m i.i.d. samples from  $\mathcal{D}$ . Goal is to estimate  $\mu$  with user-level DP.
- Our result: a private and low-error algorithm for mean estimation even with very few users (though each user may have many samples).

• **Theorem:** Let  $\mathcal{D}$  be a distribution over  $\mathbb{R}^d$ , concentrated in a ball of radius r (around an unknown location) and mean  $\mu$ . Given  $n=O\left(\frac{1}{\varepsilon}\cdot\log\frac{1}{\delta}\right)$  users and m samples per user, there is an  $(\varepsilon,\delta)$ -user level DP algorithm that, if each sample were i.i.d. from  $\mathcal{D}$ , estimates  $\mu$  up to error  $r\sqrt{d/m}$ .

- **Theorem:** Let  $\mathcal{D}$  be a distribution over  $\mathbb{R}^d$ , concentrated in a ball of radius r (around an unknown location) and mean  $\mu$ . Given  $n=O\left(\frac{1}{\varepsilon}\cdot\log\frac{1}{\delta}\right)$  users and m samples per user, there is an  $(\varepsilon,\delta)$ -user level DP algorithm that, if each sample were i.i.d. from  $\mathcal{D}$ , estimates  $\mu$  up to error  $r\sqrt{d/m}$ .
- Our algorithm runs in almost linear time in n and d. Our algorithm also works in the robust setting if even 49% of all users have all their samples corrupted (but the rest of the users have all samples intact).

- **Theorem:** Let  $\mathcal{D}$  be a distribution over  $\mathbb{R}^d$ , concentrated in a ball of radius r (around an unknown location) and mean  $\mu$ . Given  $n=O\left(\frac{1}{\varepsilon}\cdot\log\frac{1}{\delta}\right)$  users and m samples per user, there is an  $(\varepsilon,\delta)$ -user level DP algorithm that, if each sample were i.i.d. from  $\mathcal{D}$ , estimates  $\mu$  up to error  $r\sqrt{d/m}$ .
- Our algorithm runs in almost linear time in n and d. Our algorithm also works in the robust setting if even 49% of all users have all their samples corrupted (but the rest of the users have all samples intact).
- Algorithm can be applied to various learning problems (learning discrete distributions, stochastic convex optimization, etc.).

## Our Results (pt 2)

## Our Results (pt 2)

• We also show a tight trade-off between number of users n, number of samples per user m, and the overall error in estimating  $\mu$ .

### Our Results (pt 2)

- We also show a tight trade-off between number of users n, number of samples per user m, and the overall error in estimating  $\mu$ .
- Answers a conjecture of Amin et al. (ICML 2019) asking about this user-sample tradeoff.

### Our Results (pt 2)

- We also show a tight trade-off between number of users n, number of samples per user m, and the overall error in estimating  $\mu$ .
- Answers a conjecture of Amin et al. (ICML 2019) asking about this user-sample tradeoff.
- Also improves over previous work of Liu et al. (NeurIPS 2020) and Levy et al. (NeurIPS 2021) which required  $n \gg \sqrt{d\log\frac{1}{\delta}}/\varepsilon$ .

• Will focus on (non-robust) mean estimation.

- Will focus on (non-robust) mean estimation.
- **Recall goal:** We have  $n=O\left(\frac{1}{\varepsilon}\cdot\log\frac{1}{\delta}\right)$  users, each with m samples in  $\mathbb{R}^d$  from  $\mathcal{D}$ , bounded in unknown ball of radius r.

- Will focus on (non-robust) mean estimation.
- **Recall goal:** We have  $n = O\left(\frac{1}{\varepsilon} \cdot \log \frac{1}{\delta}\right)$  users, each with m samples in  $\mathbb{R}^d$  from  $\mathcal{D}$ , bounded in unknown ball of radius r.
- Want to estimate  $\mu = \mathbb{E}[\mathcal{D}]$  up to error  $r\sqrt{d/m}$ .

- Will focus on (non-robust) mean estimation.
- **Recall goal:** We have  $n=O\left(\frac{1}{\varepsilon}\cdot\log\frac{1}{\delta}\right)$  users, each with m samples in  $\mathbb{R}^d$  from  $\mathcal{D}$ , bounded in unknown ball of radius r.
- Want to estimate  $\mu = \mathbb{E}[\mathcal{D}]$  up to error  $r\sqrt{d/m}$ .
- Can show sample mean of each user is  $O\left(\frac{r}{\sqrt{m}}\right)$  away from  $\mu$ , so suffices to solve the item-level privacy problem by scaling.

- Will focus on (non-robust) mean estimation.
- **Recall goal:** We have  $n=O\left(\frac{1}{\varepsilon}\cdot\log\frac{1}{\delta}\right)$  users, each with m samples in  $\mathbb{R}^d$  from  $\mathcal{D}$ , bounded in unknown ball of radius r.
- Want to estimate  $\mu = \mathbb{E}[\mathcal{D}]$  up to error  $r\sqrt{d/m}$ .
- Can show sample mean of each user is  $O\left(\frac{r}{\sqrt{m}}\right)$  away from  $\mu$ , so suffices to solve the item-level privacy problem by scaling.
- Given  $n = O\left(\frac{1}{\varepsilon} \cdot \log \frac{1}{\delta}\right)$  points  $X_1, \dots, X_n$  in unknown ball of radius 1, approximate the ball up to error  $\sqrt{d}$ .

• Based on **exponential mechanism**: assign a score s(p) for any point p, and sample p with density proportional to  $e^{\varepsilon \cdot s(p)}$ .

- Based on **exponential mechanism**: assign a score s(p) for any point p, and sample p with density proportional to  $e^{\varepsilon \cdot s(p)}$ .
- s(p): the number of points among  $X_1, ..., X_n$  within  $\sqrt{d}$  of p.

- Based on **exponential mechanism**: assign a score s(p) for any point p, and sample p with density proportional to  $e^{\varepsilon \cdot s(p)}$ .
- s(p): the number of points among  $X_1, ..., X_n$  within  $\sqrt{d}$  of p.
- Private because changing single data point changes s(p) by at most 1.

- Based on **exponential mechanism**: assign a score s(p) for any point p, and sample p with density proportional to  $e^{\varepsilon \cdot s(p)}$ .
- s(p): the number of points among  $X_1, ..., X_n$  within  $\sqrt{d}$  of p.
- Private because changing single data point changes s(p) by at most 1.

- Based on **exponential mechanism**: assign a score s(p) for any point p, and sample p with density proportional to  $e^{\varepsilon \cdot s(p)}$ .
- s(p): the number of points among  $X_1, ..., X_n$  within  $\sqrt{d}$  of p.
- Private because changing single data point changes s(p) by at most 1.





• Problem: infinite space gets sampled also: won't sample point near center.



- Problem: infinite space gets sampled also: won't sample point near center.
- Attempt to fix: sample proportional to  $e^{\varepsilon \cdot s(p)}$  only when  $s(p) \ge 1$ .



- Problem: infinite space gets sampled also: won't sample point near center.
- Attempt to fix: sample proportional to  $e^{\varepsilon \cdot s(p)}$  only when  $s(p) \ge 1$ .



- Problem: infinite space gets sampled also: won't sample point near center.
- Attempt to fix: sample proportional to  $e^{\varepsilon \cdot s(p)}$  only when  $s(p) \ge 1$ .
- Now we lose privacy because sampling probability can drastically change from s(p) = 1 to s(p) = 0.





• If we change one point, volume of points that change from s(p) = 1 to s(p) = 0 is at most V, the volume of a ball of radius  $\sqrt{d}$  in  $\mathbb{R}^d$ .



- If we change one point, volume of points that change from s(p) = 1 to s(p) = 0 is at most V, the volume of a ball of radius  $\sqrt{d}$  in  $\mathbb{R}^d$ .
- We add "garbage bucket" of size proportional to  $V/\delta$  to drown out the volume of points that lose privacy.



- If we change one point, volume of points that change from s(p) = 1 to s(p) = 0 is at most V, the volume of a ball of radius  $\sqrt{d}$  in  $\mathbb{R}^d$ .
- We add "garbage bucket" of size proportional to  $V/\delta$  to drown out the volume of points that lose privacy.



- If we change one point, volume of points that change from s(p) = 1 to s(p) = 0 is at most V, the volume of a ball of radius  $\sqrt{d}$  in  $\mathbb{R}^d$ .
- We add "garbage bucket" of size proportional to  $V/\delta$  to drown out the volume of points that lose privacy.
- Sample garbage bucket proportional to  $V/\delta$  to ensure  $(\varepsilon, \delta)$ -DP.



• Need to ensure that we do not sample garbage bucket w.h.p. if points  $X_1, ..., X_n$  are all in ball of radius 1.

- Need to ensure that we do not sample garbage bucket w.h.p. if points  $X_1, ..., X_n$  are all in ball of radius 1.
- **Key Lemma:** if  $X_1, ..., X_n$  are in ball of radius 1, then the intersection of the balls of radius  $\sqrt{d}$  around each  $X_i$  has volume at least  $e^{-\sqrt{\log n}}$ . V, where V is the volume of a single ball of radius  $\sqrt{d}$ .

- Need to ensure that we do not sample garbage bucket w.h.p. if points  $X_1, ..., X_n$  are all in ball of radius 1.
- **Key Lemma:** if  $X_1, ..., X_n$  are in ball of radius 1, then the intersection of the balls of radius  $\sqrt{d}$  around each  $X_i$  has volume at least  $e^{-\sqrt{\log n}}$ . V, where V is the volume of a single ball of radius  $\sqrt{d}$ .
- These points in intersection have density  $e^{\varepsilon \cdot n}$  since s(p) = n.

- Need to ensure that we do not sample garbage bucket w.h.p. if points  $X_1, ..., X_n$  are all in ball of radius 1.
- **Key Lemma:** if  $X_1, ..., X_n$  are in ball of radius 1, then the intersection of the balls of radius  $\sqrt{d}$  around each  $X_i$  has volume at least  $e^{-\sqrt{\log n}}$ . V, where V is the volume of a single ball of radius  $\sqrt{d}$ .
- These points in intersection have density  $e^{\varepsilon \cdot n}$  since s(p) = n.
- Need  $\frac{V}{\delta}$   $\ll$   $e^{-\sqrt{\log n} \cdot V} \cdot e^{\varepsilon \cdot n}$ . volume of garbage bucket volume of intersection density

- Need to ensure that we do not sample garbage bucket w.h.p. if points  $X_1, ..., X_n$  are all in ball of radius 1.
- **Key Lemma:** if  $X_1, ..., X_n$  are in ball of radius 1, then the intersection of the balls of radius  $\sqrt{d}$  around each  $X_i$  has volume at least  $e^{-\sqrt{\log n}}$ . V, where V is the volume of a single ball of radius  $\sqrt{d}$ .
- These points in intersection have density  $e^{\varepsilon \cdot n}$  since s(p) = n.
- Need  $\frac{V}{\delta}$   $\ll$   $e^{-\sqrt{\log n} \cdot V} \cdot e^{\varepsilon \cdot n}$ . volume of garbage bucket volume of intersection density
- Holds if  $n \ge O(\varepsilon^{-1} \log \delta^{-1})$ .

• While the previous algorithm is optimal from an information theoretic perspective, it is not clear how to implement this efficiently.

- While the previous algorithm is optimal from an information theoretic perspective, it is not clear how to implement this efficiently.
- Difficult to run the sampling procedure, can take exponential time.

- While the previous algorithm is optimal from an information theoretic perspective, it is not clear how to implement this efficiently.
- Difficult to run the sampling procedure, can take exponential time.
- Fast algorithm via method of Rejection Sampling.

- While the previous algorithm is optimal from an information theoretic perspective, it is not clear how to implement this efficiently.
- Difficult to run the sampling procedure, can take exponential time.
- Fast algorithm via method of Rejection Sampling.
- Will sample each point  $X_i$  and a random point p in the ball of radius  $\sqrt{d}$  around  $X_i$ .

# Getting a Fast Algorithm

- While the previous algorithm is optimal from an information theoretic perspective, it is not clear how to implement this efficiently.
- Difficult to run the sampling procedure, can take exponential time.
- Fast algorithm via method of Rejection Sampling.
- Will sample each point  $X_i$  and a random point p in the ball of radius  $\sqrt{d}$  around  $X_i$ .
- We "accept" the point with probability based on s(p), and reject otherwise, to keep the distribution proportional to  $e^{\varepsilon \cdot s(p)}$ .

# Getting a Fast Algorithm

- While the previous algorithm is optimal from an information theoretic perspective, it is not clear how to implement this efficiently.
- Difficult to run the sampling procedure, can take exponential time.
- Fast algorithm via method of Rejection Sampling.
- Will sample each point  $X_i$  and a random point p in the ball of radius  $\sqrt{d}$  around  $X_i$ .
- We "accept" the point with probability based on s(p), and reject otherwise, to keep the distribution proportional to  $e^{\varepsilon \cdot s(p)}$ .
- If we reject, we keep trying until we accept a point p.

 Rejection sampling may still be slow in certain cases, namely when not all points are close together.

- Rejection sampling may still be slow in certain cases, namely when not all points are close together.
- In this setting, however: not necessary to output an accurate answer.

- Rejection sampling may still be slow in certain cases, namely when not all points are close together.
- In this setting, however: not necessary to output an accurate answer.
- **Fix (attempt 1):** stop rejection sampling after some *N* rounds. Unfortunately, this method may no longer be private.

- Rejection sampling may still be slow in certain cases, namely when not all points are close together.
- In this setting, however: not necessary to output an accurate answer.
- Fix (attempt 1): stop rejection sampling after some N rounds. Unfortunately, this method may no longer be private.
- **Fix:** stop after Expo(N) rounds, for  $N \approx e^{\sqrt{\log n}} = n^{o(1)}$ . Allows for algorithm to be both fast and maintains privacy!

• We obtain an optimal user-level private algorithm for d-dimensional mean estimation. It only requires  $\Omega\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$  users.

- We obtain an optimal user-level private algorithm for d-dimensional mean estimation. It only requires  $\Omega\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$  users.
- Our algorithm improves over previous methods, which required the number of users to depend at least on  $\sqrt{d}$ .

- We obtain an optimal user-level private algorithm for d-dimensional mean estimation. It only requires  $\Omega\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$  users.
- Our algorithm improves over previous methods, which required the number of users to depend at least on  $\sqrt{d}$ .
- Algorithm based on modifying exponential mechanism with garbage bucket, and rejection sampling techniques.

Thanks for attending!

Questions?