
Tight and Robust Private Mean 
Estimation with Few Users

Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan
International Conference on Machine Learning (ICML), 2022



Outline

1) Introduction
2) Results
3) Overview of Algorithm



Outline

1) Introduction
2) Results
3) Overview of Algorithm



Outline

1) Introduction
2) Results
3) Overview of Algorithm



Outline

1) Introduction
2) Results
3) Overview of Algorithm



Establishing Privacy of Released Data

• Many scientific/technological endeavors involve learning from data.
• Datasets may include highly sensitive information about individuals.
• Can we learn properties of data without revealing sensitive info?



Establishing Privacy of Released Data

• Many scientific/technological endeavors involve learning from data.
• Datasets may include highly sensitive information about individuals.
• Can we learn properties of data without revealing sensitive info?

Users

Data Algorithm



Establishing Privacy of Released Data

• Many scientific/technological endeavors involve learning from data.
• Datasets may include highly sensitive information about individuals.
• Can we learn properties of data without revealing sensitive info?

Users

Data Algorithm Output

Output Reveals 
Sensitive Information



Establishing Privacy of Released Data

• Many scientific/technological endeavors involve learning from data.
• Datasets may include highly sensitive information about individuals.
• Can we learn properties of data without revealing sensitive info?

Users

Data Algorithm Output

Output Reveals 
Sensitive Information



Differential Privacy

• Provably ensures that no data point has its privacy compromised.
• A randomized algorithm acting on a dataset ଵ ଶ ௡ is 

-differentially private ( -DP) if for any two adjacent
datasets (i.e., only one data point changes) and any subset ,

ିఌ ( ( ᇱ ఌ (
• This means that conditioned on seeing any output, we won’t know if 

any individual data point ௜ was in fact some other data point ௜
ᇱ.

• In general, think of as a small constant (e.g., ), and as 
cryptographically small ( ି଺଴).



Differential Privacy

• Provably ensures that no data point has its privacy compromised.
• A randomized algorithm acting on a dataset ଵ ଶ ௡ is 

-differentially private ( -DP) if for any two adjacent
datasets (i.e., only one data point changes) and any subset ,

ିఌ ( ( ᇱ ఌ (
• This means that conditioned on seeing any output, we won’t know if 

any individual data point ௜ was in fact some other data point ௜
ᇱ.

• In general, think of as a small constant (e.g., ), and as 
cryptographically small ( ି଺଴).



Differential Privacy

• Provably ensures that no data point has its privacy compromised.
• A randomized algorithm acting on a dataset ଵ ଶ ௡ is 

-differentially private ( -DP) if for any two adjacent
datasets (i.e., only one data point changes) and any subset ,

ିఌ ( ( ᇱ ఌ (
• This means that conditioned on seeing any output, we won’t know if 

any individual data point ௜ was in fact some other data point ௜
ᇱ.

• In general, think of as a small constant (e.g., ), and as 
cryptographically small ( ି଺଴).



Differential Privacy

• Provably ensures that no data point has its privacy compromised.
• A randomized algorithm acting on a dataset ଵ ଶ ௡ is 

-differentially private ( -DP) if for any two adjacent
datasets (i.e., only one data point changes) and any subset ,

ିఌ ( ( ᇱ ఌ (
• This means that conditioned on seeing any output, we won’t know if 

any individual data point ௜ was in fact some other data point ௜
ᇱ.

• In general, think of as a small constant (e.g., ), and as 
cryptographically small ( ି଺଴).



Differential Privacy

• Provably ensures that no data point has its privacy compromised.
• A randomized algorithm acting on a dataset ଵ ଶ ௡ is 

-differentially private ( -DP) if for any two adjacent
datasets (i.e., only one data point changes) and any subset ,

ିఌ ( ( ᇱ ఌ (
• This means that conditioned on seeing any output, we won’t know if 

any individual data point ௜ was in fact some other data point ௜
ᇱ.

• In general, think of as a small constant (e.g., ), and as 
cryptographically small ( ି଺଴).



User-Level Privacy

• Our goal is not to protect the privacy of a data point, but rather to 
protect the privacy of each user who contributes data points.

• Users may contribute more than one data point!



User-Level Privacy

• Our goal is not to protect the privacy of a data point, but rather to 
protect the privacy of each user who contributes data points.

• Users may contribute more than one data point!



User-Level Privacy

• Our goal is not to protect the privacy of a data point, but rather to 
protect the privacy of each user who contributes data points.

• Users may contribute more than one data point!

Output



User-Level Privacy

• Our goal is not to protect the privacy of a data point, but rather to 
protect the privacy of each user who contributes data points.

• Users may contribute more than one data point!

Output



User-Level Privacy

• Our goal is not to protect the privacy of a data point, but rather to 
protect the privacy of each user who contributes data points.

• Users may contribute more than one data point!

Output

Day 1
Day 2

Day m
⋮



User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).



User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).



User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).



User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).



User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).



User-Level Differential Privacy (DP)

• users each with samples ௜,௝ ௝ୀଵ

௠
. Adjacent: data of at most one 

user changes (but all the samples of that user may change).
• Main question: How much more difficult is ensuring user-level

privacy as opposed to item-level privacy?
• Setting with very few users (but perhaps many samples per user):

• Analyzing rare situation (such as understanding Covid-19 in early days).
• Analyzing local information (such as information of each hospital separately).



Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).



Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).



Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).



Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).



Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).



Mean Estimation

• One of the simplest learning problems.
• Given a distribution over ௗ, compute the mean .
• Fundamental subroutine in extremely wide array of learning algos.
• In our setting, we suppose each of users outputs i.i.d. samples 

from . Goal is to estimate with user-level DP.
• Our result: a private and low-error algorithm for mean estimation 

even with very few users (though each user may have many samples).



Our Results
• Theorem: Let be a distribution over ௗ, concentrated in a ball of 

radius (around an unknown location) and mean . Given 
ଵ

ఌ

ଵ

ఋ
users and samples per user, there is an -user 

level DP algorithm that, if each sample were i.i.d. from , estimates 
up to error .

• Our algorithm runs in almost linear time in and . Our algorithm 
also works in the robust setting if even of all users have all their 
samples corrupted (but the rest of the users have all samples intact).

• Algorithm can be applied to various learning problems (learning 
discrete distributions, stochastic convex optimization, etc.).



Our Results
• Theorem: Let be a distribution over ௗ, concentrated in a ball of 

radius (around an unknown location) and mean . Given 
ଵ

ఌ

ଵ

ఋ
users and samples per user, there is an -user 

level DP algorithm that, if each sample were i.i.d. from , estimates 
up to error .

• Our algorithm runs in almost linear time in and . Our algorithm 
also works in the robust setting if even of all users have all their 
samples corrupted (but the rest of the users have all samples intact).

• Algorithm can be applied to various learning problems (learning 
discrete distributions, stochastic convex optimization, etc.).



Our Results
• Theorem: Let be a distribution over ௗ, concentrated in a ball of 

radius (around an unknown location) and mean . Given 
ଵ

ఌ

ଵ

ఋ
users and samples per user, there is an -user 

level DP algorithm that, if each sample were i.i.d. from , estimates 
up to error .

• Our algorithm runs in almost linear time in and . Our algorithm 
also works in the robust setting if even of all users have all their 
samples corrupted (but the rest of the users have all samples intact).

• Algorithm can be applied to various learning problems (learning 
discrete distributions, stochastic convex optimization, etc.).



Our Results
• Theorem: Let be a distribution over ௗ, concentrated in a ball of 

radius (around an unknown location) and mean . Given 
ଵ

ఌ

ଵ

ఋ
users and samples per user, there is an -user 

level DP algorithm that, if each sample were i.i.d. from , estimates 
up to error .

• Our algorithm runs in almost linear time in and . Our algorithm 
also works in the robust setting if even of all users have all their 
samples corrupted (but the rest of the users have all samples intact).

• Algorithm can be applied to various learning problems (learning 
discrete distributions, stochastic convex optimization, etc.).



Our Results (pt 2)

• We also show a tight trade-off between number of users , number 
of samples per user , and the overall error in estimating .

• Answers a conjecture of Amin et al. (ICML 2019) asking about this 
user-sample tradeoff.

• Also improves over previous work of Liu et al. (NeurIPS 2020) and 

Levy et al. (NeurIPS 2021) which required ଵ

ఋ
.



Our Results (pt 2)

• We also show a tight trade-off between number of users , number 
of samples per user , and the overall error in estimating .

• Answers a conjecture of Amin et al. (ICML 2019) asking about this 
user-sample tradeoff.

• Also improves over previous work of Liu et al. (NeurIPS 2020) and 

Levy et al. (NeurIPS 2021) which required ଵ

ఋ
.



Our Results (pt 2)

• We also show a tight trade-off between number of users , number 
of samples per user , and the overall error in estimating .

• Answers a conjecture of Amin et al. (ICML 2019) asking about this 
user-sample tradeoff.

• Also improves over previous work of Liu et al. (NeurIPS 2020) and 

Levy et al. (NeurIPS 2021) which required ଵ

ఋ
.



Our Results (pt 2)

• We also show a tight trade-off between number of users , number 
of samples per user , and the overall error in estimating .

• Answers a conjecture of Amin et al. (ICML 2019) asking about this 
user-sample tradeoff.

• Also improves over previous work of Liu et al. (NeurIPS 2020) and 

Levy et al. (NeurIPS 2021) which required ଵ

ఋ
.



Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .



Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .



Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .



Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .



Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .



Main Focus

• Will focus on (non-robust) mean estimation.

• Recall goal: We have ଵ

ఌ

ଵ

ఋ
users, each with samples in 

ௗ from , bounded in unknown ball of radius .

• Want to estimate up to error .

• Can show sample mean of each user is ௥

௠
away from , so 

suffices to solve the item-level privacy problem by scaling.

• Given ଵ

ఌ

ଵ

ఋ
points ଵ ௡ in unknown ball of radius , 

approximate the ball up to error .



Algorithm (Attempt 1)

• Based on exponential mechanism: assign a score for any point 
, and sample with density proportional to ఌ⋅௦(௣).

• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .



Algorithm (Attempt 1)

• Based on exponential mechanism: assign a score for any point 
, and sample with density proportional to ఌ⋅௦(௣).

• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .



Algorithm (Attempt 1)

• Based on exponential mechanism: assign a score for any point 
, and sample with density proportional to ఌ⋅௦(௣).

• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .



Algorithm (Attempt 1)

• Based on exponential mechanism: assign a score for any point 
, and sample with density proportional to ఌ⋅௦(௣).

• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .



Algorithm (Attempt 1)

• Based on exponential mechanism: assign a score for any point 
, and sample with density proportional to ఌ⋅௦(௣).

• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .



Algorithm (Attempt 1)

• Based on exponential mechanism: assign a score for any point 
, and sample with density proportional to ఌ⋅௦(௣).

• : the number of points among ଵ ௡ within of .
• Private because changing single data point changes by at most .



Attempt 2: Fixing Accuracy



Attempt 2: Fixing Accuracy

• Problem: infinite space gets sampled also: won’t sample point near 
center.



Attempt 2: Fixing Accuracy

• Problem: infinite space gets sampled also: won’t sample point near 
center.

• Attempt to fix: sample proportional to ఌ⋅௦(௣) only when .



Attempt 2: Fixing Accuracy

• Problem: infinite space gets sampled also: won’t sample point near 
center.

• Attempt to fix: sample proportional to ఌ⋅௦(௣) only when .
• Now we lose privacy because sampling probability can drastically 

change from to 



Attempt 2: Fixing Accuracy

• Problem: infinite space gets sampled also: won’t sample point near 
center.

• Attempt to fix: sample proportional to ఌ⋅௦(௣) only when .
• Now we lose privacy because sampling probability can drastically 

change from to 



Attempt 3: Fixing Privacy

• If we change one point, volume of points that change from 
to is at most the volume of a ball of radius in ௗ.

• We add “garbage bucket” of size proportional to to drown out 
the volume of points that lose privacy.

• Sample garbage bucket proportional to to ensure -DP.



Attempt 3: Fixing Privacy

• If we change one point, volume of points that change from 
to is at most the volume of a ball of radius in ௗ.

• We add “garbage bucket” of size proportional to to drown out 
the volume of points that lose privacy.

• Sample garbage bucket proportional to to ensure -DP.



Attempt 3: Fixing Privacy

• If we change one point, volume of points that change from 
to is at most the volume of a ball of radius in ௗ.

• We add “garbage bucket” of size proportional to to drown out 
the volume of points that lose privacy.

• Sample garbage bucket proportional to to ensure -DP.



Attempt 3: Fixing Privacy

• If we change one point, volume of points that change from 
to is at most the volume of a ball of radius in ௗ.

• We add “garbage bucket” of size proportional to to drown out 
the volume of points that lose privacy.

• Sample garbage bucket proportional to to ensure -DP.

Garbage 
Bucket



Attempt 3: Fixing Privacy

• If we change one point, volume of points that change from 
to is at most the volume of a ball of radius in ௗ.

• We add “garbage bucket” of size proportional to to drown out 
the volume of points that lose privacy.

• Sample garbage bucket proportional to to ensure -DP.

Garbage 
Bucket



Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ

୴୭୪୳୫ୣ ୭୤ ୥ୟ୰ୠୟ୥ୣ ୠ୳ୡ୩ୣ୲

ି ୪୭୥ ௡

୴୭୪୳୫ୣ ୭୤ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬

ఌ⋅௡

ୢୣ୬ୱ୧୲୷

.

• Holds if ିଵ ିଵ .



Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ

୴୭୪୳୫ୣ ୭୤ ୥ୟ୰ୠୟ୥ୣ ୠ୳ୡ୩ୣ୲

ି ୪୭୥ ௡

୴୭୪୳୫ୣ ୭୤ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬

ఌ⋅௡

ୢୣ୬ୱ୧୲୷

.

• Holds if ିଵ ିଵ .



Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ

୴୭୪୳୫ୣ ୭୤ ୥ୟ୰ୠୟ୥ୣ ୠ୳ୡ୩ୣ୲

ି ୪୭୥ ௡

୴୭୪୳୫ୣ ୭୤ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬

ఌ⋅௡

ୢୣ୬ୱ୧୲୷

.

• Holds if ିଵ ିଵ .



Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ

୴୭୪୳୫ୣ ୭୤ ୥ୟ୰ୠୟ୥ୣ ୠ୳ୡ୩ୣ୲

ି ୪୭୥ ௡

୴୭୪୳୫ୣ ୭୤ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬

ఌ⋅௡

ୢୣ୬ୱ୧୲୷

.

• Holds if ିଵ ିଵ .



Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ

୴୭୪୳୫ୣ ୭୤ ୥ୟ୰ୠୟ୥ୣ ୠ୳ୡ୩ୣ୲

ି ୪୭୥ ௡

୴୭୪୳୫ୣ ୭୤ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬

ఌ⋅௡

ୢୣ୬ୱ୧୲୷

.

• Holds if ିଵ ିଵ .



Why is this accurate?

• Need to ensure that we do not sample garbage bucket w.h.p. if points 
ଵ ௡ are all in ball of radius .

• Key Lemma: if ଵ ௡ are in ball of radius , then the intersection 
of the balls of radius around each ௜ has volume at least ି ୪୭୥ ௡

, where is the volume of a single ball of radius .
• These points in intersection have density ఌ⋅௡ since .

• Need ௏

ఋ

୴୭୪୳୫ୣ ୭୤ ୥ୟ୰ୠୟ୥ୣ ୠ୳ୡ୩ୣ୲

ି ୪୭୥ ௡

୴୭୪୳୫ୣ ୭୤ ୧୬୲ୣ୰ୱୣୡ୲୧୭୬

ఌ⋅௡

ୢୣ୬ୱ୧୲୷

.

• Holds if ିଵ ିଵ .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



Getting a Fast Algorithm

• While the previous algorithm is optimal from an information theoretic 
perspective, it is not clear how to implement this efficiently.

• Difficult to run the sampling procedure, can take exponential time.
• Fast algorithm via method of Rejection Sampling.
• Will sample each point ௜ and a random point in the ball of radius 

around ௜.
• We “accept” the point with probability based on , and reject 

otherwise, to keep the distribution proportional to ఌ⋅௦ ௣ .
• If we reject, we keep trying until we accept a point .



A few caveats

• Rejection sampling may still be slow in certain cases, namely when 
not all points are close together.

• In this setting, however: not necessary to output an accurate answer.
• Fix (attempt 1): stop rejection sampling after some rounds. 

Unfortunately, this method may no longer be private.

• Fix: stop after rounds, for ୪୭୥ ௡ ௢ ଵ . Allows for 
algorithm to be both fast and maintains privacy!



A few caveats

• Rejection sampling may still be slow in certain cases, namely when 
not all points are close together.

• In this setting, however: not necessary to output an accurate answer.
• Fix (attempt 1): stop rejection sampling after some rounds. 

Unfortunately, this method may no longer be private.

• Fix: stop after rounds, for ୪୭୥ ௡ ௢ ଵ . Allows for 
algorithm to be both fast and maintains privacy!



A few caveats

• Rejection sampling may still be slow in certain cases, namely when 
not all points are close together.

• In this setting, however: not necessary to output an accurate answer.
• Fix (attempt 1): stop rejection sampling after some rounds. 

Unfortunately, this method may no longer be private.

• Fix: stop after rounds, for ୪୭୥ ௡ ௢ ଵ . Allows for 
algorithm to be both fast and maintains privacy!



A few caveats

• Rejection sampling may still be slow in certain cases, namely when 
not all points are close together.

• In this setting, however: not necessary to output an accurate answer.
• Fix (attempt 1): stop rejection sampling after some rounds. 

Unfortunately, this method may no longer be private.

• Fix: stop after rounds, for ୪୭୥ ௡ ௢ ଵ . Allows for 
algorithm to be both fast and maintains privacy!



A few caveats

• Rejection sampling may still be slow in certain cases, namely when 
not all points are close together.

• In this setting, however: not necessary to output an accurate answer.
• Fix (attempt 1): stop rejection sampling after some rounds. 

Unfortunately, this method may no longer be private.

• Fix: stop after rounds, for ୪୭୥ ௡ ௢ ଵ . Allows for 
algorithm to be both fast and maintains privacy!



Conclusion

• We obtain an optimal user-level private algorithm for -dimensional 
mean estimation. It only requires ଵ

ఌ

ଵ

ఋ
users.

• Our algorithm improves over previous methods, which required the 
number of users to depend at least on .

• Algorithm based on modifying exponential mechanism with garbage 
bucket, and rejection sampling techniques.



Conclusion

• We obtain an optimal user-level private algorithm for -dimensional 
mean estimation. It only requires ଵ

ఌ

ଵ

ఋ
users.

• Our algorithm improves over previous methods, which required the 
number of users to depend at least on .

• Algorithm based on modifying exponential mechanism with garbage 
bucket, and rejection sampling techniques.



Conclusion

• We obtain an optimal user-level private algorithm for -dimensional 
mean estimation. It only requires ଵ

ఌ

ଵ

ఋ
users.

• Our algorithm improves over previous methods, which required the 
number of users to depend at least on .

• Algorithm based on modifying exponential mechanism with garbage 
bucket, and rejection sampling techniques.



Conclusion

• We obtain an optimal user-level private algorithm for -dimensional 
mean estimation. It only requires ଵ

ఌ

ଵ

ఋ
users.

• Our algorithm improves over previous methods, which required the 
number of users to depend at least on .

• Algorithm based on modifying exponential mechanism with garbage 
bucket, and rejection sampling techniques.



Thanks for attending!

Questions?


