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Problem

Unconstrained minimization: finite-sum objective.

min
w∈Rd

f (w) :=
1

n

n∑
i=1

fi (w)

where n is the number of training examples.

Smoothness and convexity: Each fi is convex, differentiable and Li -smooth, implying that

f is L-smooth where L := maxi Li .

Strong convexity: f is µ strongly-convex.
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Introduction

For smooth, strongly-convex functions with condition number κ, deterministic gradient

descent (GD) uses a constant step-size and has an O(exp(−T/κ)) convergence rate.

Can be further improved to Θ(exp(−T/
√
κ)) using Nesterov acceleration.

Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an

Θ(1/T ) convergence rate.

The two regimes require a different step-size choice (constant vs decreasing) and the

convergence rate is not adaptive to the noise (σ2) in the stochastic gradients.

Require noise-adaptivity – one step-size sequence that can achieve the optimal rate in

both the deterministic and stochastic settings without knowledge of σ2.

2



Introduction

For smooth, strongly-convex functions with condition number κ, deterministic gradient

descent (GD) uses a constant step-size and has an O(exp(−T/κ)) convergence rate.

Can be further improved to Θ(exp(−T/
√
κ)) using Nesterov acceleration.

Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an

Θ(1/T ) convergence rate.

The two regimes require a different step-size choice (constant vs decreasing) and the

convergence rate is not adaptive to the noise (σ2) in the stochastic gradients.

Require noise-adaptivity – one step-size sequence that can achieve the optimal rate in

both the deterministic and stochastic settings without knowledge of σ2.

2



Introduction

For smooth, strongly-convex functions with condition number κ, deterministic gradient

descent (GD) uses a constant step-size and has an O(exp(−T/κ)) convergence rate.

Can be further improved to Θ(exp(−T/
√
κ)) using Nesterov acceleration.

Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an

Θ(1/T ) convergence rate.

The two regimes require a different step-size choice (constant vs decreasing) and the

convergence rate is not adaptive to the noise (σ2) in the stochastic gradients.

Require noise-adaptivity – one step-size sequence that can achieve the optimal rate in

both the deterministic and stochastic settings without knowledge of σ2.

2



Introduction

For smooth, strongly-convex functions with condition number κ, deterministic gradient

descent (GD) uses a constant step-size and has an O(exp(−T/κ)) convergence rate.

Can be further improved to Θ(exp(−T/
√
κ)) using Nesterov acceleration.

Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an

Θ(1/T ) convergence rate.

The two regimes require a different step-size choice (constant vs decreasing) and the

convergence rate is not adaptive to the noise (σ2) in the stochastic gradients.

Require noise-adaptivity – one step-size sequence that can achieve the optimal rate in

both the deterministic and stochastic settings without knowledge of σ2.

2



Introduction

For smooth, strongly-convex functions with condition number κ, deterministic gradient

descent (GD) uses a constant step-size and has an O(exp(−T/κ)) convergence rate.

Can be further improved to Θ(exp(−T/
√
κ)) using Nesterov acceleration.

Stochastic gradient descent (SGD) requires a decreasing O(1/k) step-size and has an

Θ(1/T ) convergence rate.

The two regimes require a different step-size choice (constant vs decreasing) and the

convergence rate is not adaptive to the noise (σ2) in the stochastic gradients.

Require noise-adaptivity – one step-size sequence that can achieve the optimal rate in

both the deterministic and stochastic settings without knowledge of σ2.

2



Related work towards noise-adaptivity

Work that attains the Õ
(

exp(−T/κ) + σ2

T

)
convergence rate for,

smooth, strongly-convex functions using SGD that switches between two carefully

designed step-sizes [Stich, 2019]. Requires knowledge of L, µ and σ2.

smooth functions satisfying the PL condition using SGD with a constant then decaying

step-size [Khaled and Richtárik, 2020]. Noise adaptive but requires knowledge of L, µ.

smooth functions satisfying the PL condition using SGD with an exponentially decreasing

sequence of step-sizes [Li et al., 2020]. Noise adaptive but requires knowledge of L.
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Motivation

Problem 1: All noise-adaptive methods require knowledge of problem-dependent constants,

and are not problem-adaptive.

None of the problem-adaptive methods [Duchi et al., 2011, Kingma and Ba, 2015,

Vaswani et al., 2019b, Loizou et al., 2021] are noise-adaptive when minimizing smooth,

strongly-convex functions.

Problem 2: Current noise-adaptive methods do not match the optimal
√
κ dependence

and are sub-optimal in the deterministic setting.

1. Can we design SGD step-sizes that are simultaneously (i) problem-adaptive and (ii)

noise-adaptive – achieve the Õ
(

exp(−T/κ) + σ2

T

)
rate without knowledge of L, µ or σ2?

2. Can we obtain the accelerated Õ
(

exp(−T/
√
κ) + σ2

T

)
rate?
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SGD with exponentially decreasing step-sizes

wk+1 = wk − γkαk︸ ︷︷ ︸
:=ηk

∇fik(wk) (SGD)

where γk is the problem-dependent scaling term that captures the smoothness and αk that

controls the decay of the step-size.

Exponentially decreasing step-sizes [Li et al., 2020]: α :=
[
β
T

]1/T

≤ 1 for β ≥ 1 and αk := αk .

Lie between the constant and 1/k decreasing

step-sizes, implying that for k ∈ [T ],

αk ∈
[

1
k , 1
]
.
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Warm-up – known smoothness

Assumption on the noise: σ2 := Ei [fi (w
∗)− f ∗i ].

SGD with known smoothness

Assuming (i) convexity and L-smoothness of each fi , (ii) µ strong-convexity of f , SGD with

γk = 1
L , αk =

(
β
T

)k/T
converges as,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c2 exp

(
−T

κ

α

ln(T/β)

)
+

8σ2c2κ

µe2

(ln(T/β))2

α2T
,

where κ = L
µ and c2 = exp

(
1
κ ·

2β
ln(T/β)

)
.

Result can be concluded from Li et al. [2020], but we do not require the growth condition

and use a different proof technique that helps handle unknown smoothness later.
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SGD with online estimation of unknown smoothness

Use stochastic line-search (SLS) [Vaswani et al., 2019b] to set γk , the problem-dependent

part of the step-size.

Starting from a guess (γmax) of the step-size, SLS uses a backtracking procedure and

returns the largest step-size γk that satisfies the following conditions: γk ≤ γmax and

fik(wk − γk∇fik(wk)) ≤ fik(wk)− cγk ‖∇fik(wk)‖2
.

Ensures that γk ∈
[
min

{
2(1−c)

Lik
, γmax

}
, γmax

]
.

When σ = 0, SGD with αk = 1 for all k and γk set according to SLS (with c ≥ 1/2) has

an O(exp(−T/κ)) convergence to the minimizer [Vaswani et al., 2019b].

When σ 6= 0, this method converges to a neighbourhood that depends on γmaxσ
2.
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Convergence of SGD with SLS

SGD with SLS – Upper Bound

Under the same assumptions, SGD with αk =
(
β
T

)k/T
, γk as the largest step-size that

satisfies γk ≤ γmax and the SLS condition with c = 1/2 converges as,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c1 exp

(
−T

κ′
α

ln(T/β)

)
+

8σ2c1(κ′)2γmax

e2

(ln(T/β))2

α2T

+
2σ2c1κ

′ ln(T/β)
(
γmax −min

{
γmax,

1
L

})
eα

,

where κ′ := max
{

L
µ ,

1
µγmax

}
, c1 = exp

(
1
κ′ ·

2β
ln(T/β)

)
.

O
(
exp(−T/κ) + σ2

/T
)

convergence to a neighbourhood determined by σ2 and initial

estimation error
(
γmax −min

{
γmax,

1
L

})
.

9



Convergence of SGD with SLS

SGD with SLS – Upper Bound

Under the same assumptions, SGD with αk =
(
β
T

)k/T
, γk as the largest step-size that

satisfies γk ≤ γmax and the SLS condition with c = 1/2 converges as,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c1 exp

(
−T

κ′
α

ln(T/β)

)
+

8σ2c1(κ′)2γmax

e2

(ln(T/β))2

α2T

+
2σ2c1κ

′ ln(T/β)
(
γmax −min

{
γmax,

1
L

})
eα

,

where κ′ := max
{

L
µ ,

1
µγmax

}
, c1 = exp

(
1
κ′ ·

2β
ln(T/β)

)
.

O
(
exp(−T/κ) + σ2

/T
)

convergence to a neighbourhood determined by σ2 and initial

estimation error
(
γmax −min

{
γmax,

1
L

})
.

9



Convergence of SGD with SLS

SGD with SLS – Lower Bound

When using T iterations of SGD to minimize the sum f (w) = f1(w)+f2(w)
2 of two

one-dimensional quadratics, f1(w) = 1
2 (w − 1)2 and f2(w) = 1

2 (2w + 1/2)2, setting the

step-size using SLS with γmax ≥ 1 and c ≥ 1/2, any convergent sequence of αk results in

convergence to a neighbourhood of the solution. Specifically, if w1 > 0, then,

E(wT − w∗) ≥ min

(
w1,

3

8

)
.

Lower-bound is not specific to SLS and will work for other methods [Loizou et al., 2021,

Berrada et al., 2020] that set the step-size in an online fashion.

Lower-bound is not specific to exponential step-sizes and works for any αk sequence.

Neighbourhood term is the price of misestimation of the smoothness.

What if estimate the smoothness offline – without any correlation between γk and ik?
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SGD with offline estimation of unknown smoothness

γk is set before sampling ik . For simplicity, consider a fixed γk = γ = ν
L for some ν > 0.

SGD with offline estimation of the smoothness – Upper Bound

Under the same assumptions, SGD with αk =
(
β
T

)k/T
, γk = ν

L converges as,

‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c2 exp

(
−min{ν, 1}T

κ

α

ln(T/β)

)
+ max{ν2, 1}8c2κ ln(T/β)

µ e2 α2 T

[
2σ2 ln(T/β) + G [ln(ν)]+

]
where c2 = exp

(
1
κ

2β
ln(T/β)

)
, [x ]+ = max{x , 0}, G = maxj∈[k0]{f (wj)− f ∗}.

Ensures convergence to the minimizer, but the rate is slowed down proportional to ν.

For polynomial αk sequences, Moulines and Bach [2011] show an exp(ν) dependence on

the rate =⇒ exponential step-sizes are more robust towards misspecification.
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For polynomial αk sequences, Moulines and Bach [2011] show an exp(ν) dependence on
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SGD with offline estimation of unknown smoothness

SGD with offline estimation of the smoothness – Lower Bound

When minimizing a one-dimensional quadratic function f (w) = 1
2 (xw − y)2, GD with

αk =
(
β
T

)k/T
, γk = ν

L for ν > 3, satisfies

wk+1 − w∗ = (w1 − w∗)
k∏

i=1

(1− ναi ).

After k ′ := T
ln(T/β) ln

(
ν
3

)
iterations, we have that

|wk′+1 − w∗| ≥ 2k′ |w1 − w∗|.

If ν = 10, then k ′ ≥ b T
ln(T/β)c =⇒ divergence in the first T

ln(T/β) iterations, and the

optimality gap has been increased by a factor of 2T/ ln(T/β).

Slowdown in rate is the price of misestimation of the smoothness.
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Accelerated SGD with exponentially decreasing step-sizes

Assumption on the noise: Ei ‖∇fi (w)‖2 ≤ ρ ‖∇f (w)‖2 + σ2

yk = wk + bk (wk − wk−1),

wk+1 = yk − γkαk∇fik(yk). (ASGD)

where γk = 1
ρL , αk =

(
β
T

)k/T
, rk =

√
µ
ρL

(
β
T

)k/2T

and bk = (1−rk−1) rk−1 α

rk+r2
k−1 α

.

Equivalent to Nesterov acceleration if we use a deterministic gradient ∇f (yk) and

γk = γ = 1
L and αk = 1 for all k.
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Convergence of Accelerated SGD – Known smoothness & strong-convexity

Convergence of ASGD

Under the same assumptions as before and (iii) the growth condition on the stochastic

gradients, ASGD with w1 = y1, γk = 1
ρL , αk =

(
β
T

)k/T
, rk =

√
µ
ρL

(
β
T

)k/2T

and

bk = (1−rk−1) rk−1 α

rk+r2
k−1 α

converges as,

E[f (wT+1)− f ∗] ≤ 2c3 exp

(
− T
√
κρ

α

ln(T/β)

)
E[f (w1)− f ∗] +

2σ2c3

ρµe2

(ln(T/β))2

α2T
,

where c3 = exp
(

2β√
ρκ ln(T/β)

)
.

In the deterministic setting, ρ = 1 and σ = 0, and ASGD is near-optimal.

When σ = 0, ASGD improves over Vaswani et al. [2019a]. and matches [Mishkin, 2020].

When σ 6= 0, Cohen et al. [2018], Vaswani et al. [2019a] use a constant step-size and

prove convergence to a neighbourhood.

Aybat et al. [2019] use a more complicated algorithm and prove this rate when T ≥ 2
√
κ.
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ASGD with offline estimation of the smoothness & strong-convexity

Assume γk = γ = 1
ρL̃

= νL
ρL and µ̃ = νµµ where νµ ≤ 1.

Convergence of ASGD

Under the same assumptions and ν = νLνµ ≤ ρκ, ASGD with w1 = y1, γk = 1
ρL̃

= νL
ρL ,

αk =
(
β
T

)k/T
, µ̃ = νµµ ≤ µ, rk =

√
ν
ρκ

(
β
T

)k/2T

and bk = (1−rk−1) rk−1 α

rk+r2
k−1 α

converges as,

E[f (wT+1)− f ∗] ≤ 2c3 exp

(
−
√

min{ν, 1}T
√
κρ

α

ln(T/β)

)
E[f (w1)− f ∗]

+
2c3(ln(T/β))2

e2α2µT

[
σ2

ρ
+ G 2 min{k0

T
, 1}
]

max{ νL
νµ
, ν2

L},

where c3 = exp
(

1√
ρκ

2β
ln(T/β)

)
, k0 := bT [ln(νL)]+

ln(T/β) c, G = maxj∈[k0] ‖∇f (yj)‖.

Implies an Õ

(
exp

(
−T
√

min{ν,1}
√
κρ

)
+
[
σ2+G 2[ln(νL)]+

T

]
max{ νLνµ , ν

2
L}
)

rate.
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Experimental evaluation

Conservative decorrelated SLS: Line-search starting from γk−1 (with γ0 = γmax) for a

random or previously sampled function (jk), find the largest step-size γk that satisfies

fjk (wk − γk∇fjk (wk)) ≤ fjk (wk)− cγk ‖∇fjk (wk)‖2
,
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Figure 1: Regularized logistic regression
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Other results and Future work

Results for strongly star-convex functions [Hinder et al., 2020].

Effect of batch-size for all results.

Result showing that no polynomial step-size can achieve the desired noise-adaptive rate.

Exponential step-sizes do not seem to be noise-adaptive for convex functions (without

strong-convexity) [Upper-bound]. Results showing that it is unlikely any

exponential/polynomial step-size will be noise-adaptive in this case.

Algorithm without any price of misestimation.

Step-size schemes that are noise-adaptive for convex functions.
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Questions?

Paper: https://arxiv.org/abs/2110.11442

Code: https://github.com/R3za/expsls

Contact: vaswani.sharan@gmail.com
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