

Modeling Structure with Undirected Neural Networks

<u>Tsvetomila Mihaylova</u>¹, Vlad Niculae², André F. T. Martins^{1,3,4}

ICML, July 2022

- 1: Instituto de Telecomunicações, Instituto Superior Técnico
- 2: Informatics Institute, University of Amsterdam
- 3: LUMLIS (Lisbon ELLIS Unit)
- 4: Unbabel

Neural Networks are a preferred choice for modeling structured data

Neural Networks are a preferred choice for modeling structured data

Neural Networks are a preferred choice for modeling structured data

Neural Networks are (usually) monolithic mappings from inputs to outputs

Neural Networks are (usually) monolithic mappings from inputs to outputs with fixed computation order

Which prevents them from capturing...

Which prevents them from capturing...

Which prevents them from capturing...

In this work:

Combine factor graphs and neural networks

In this work:

Combine factor graphs and neural networks

proposing

Undirected Neural Networks (UNNs)

In this work:

Combine factor graphs and neural networks proposing

Undirected Neural Networks (UNNs)

flexible framework, computations that can be performed in any order

Neural Networks + Factor Graphs = Undirected Neural Networks

Outputs are:

Neural Networks + Factor Graphs = Undirected Neural Networks

Outputs are:

not computed by evaluating a composition of functions in a given order, but

Neural Networks + Factor Graphs = Undirected Neural Networks

Outputs are:

not computed by evaluating a composition of functions in a given order, but obtained implicitly by minimizing an energy function which factors over a graph.

$$E_{\mathsf{XH}}(x,h) = -\langle h, Wx \rangle$$

$$E_{\mathsf{XH}}(x,h) = -\langle h, Wx \rangle$$

$$E_{\mathsf{HY}}(h,y) = -\langle y, Vh \rangle$$

$$E_{\mathrm{XH}}(x,h) = -\langle h, Wx \rangle$$

$$E_{\mathsf{HY}}(h,y)\!=\!-\langle y,\!Vh\rangle$$

multilinear energy

$$E_{ extsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$

$$E_{ extsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$$

$$E_{ extsf{Z}}(x)=-\langle x,b_{ extsf{Z}}
angle+\Psi_{ extsf{Z}}(x)$$

$$extsf{Z}\in\{ extsf{X},\! extsf{H},\! extsf{Y}\}$$

multilinear energy

$$E_{\mathsf{XH}}(x,h) = -\langle h, Wx \rangle$$

$$E_{\mathsf{HY}}(h,y) = -\langle y, Vh \rangle$$

$$E_{\mathsf{Z}}(x) = -\langle x, b_{\mathsf{Z}} \rangle + \Psi_{\mathsf{Z}}(x)$$

 $\mathsf{Z} \in \{\mathsf{X}, \mathsf{H}, \mathsf{Y}\}$

multilinear energy

linear plus a convex regularizer Ψ

$$E_{\mathsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$
 $E_{\mathsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$ $E_{\mathsf{Z}}(x)=-\langle x,b_{\mathsf{Z}}
angle+\Psi_{\mathsf{Z}}(x)$ $\mathsf{Z}\in\{\mathsf{X},\mathsf{H},\!\mathsf{Y}\}$

1

$$E_{ extsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$
 $E_{ extsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$ $E_{ extsf{Z}}(x)=-\langle x,b_{ extsf{Z}}
angle+\Psi_{ extsf{Z}}(x)$ $extsf{Z}\in\{ extsf{X}, extsf{H}, extsf{Y}\}$

For specific choices of Ψ minimization wrt every variable can be done in closed form given the others.

$$E_{\mathsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$
 $E_{\mathsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$ $E_{\mathsf{Z}}(x)=-\langle x,b_{\mathsf{Z}}
angle+\Psi_{\mathsf{Z}}(x)$ $\mathsf{Z}\in\{\mathsf{X},\mathsf{H},\mathsf{Y}\}$

$$h_{\star} \!=\! (\nabla \Psi_{\mathsf{H}}^{*})(Wx \!+\! V^{\top}y \!+\! b_{\mathsf{H}})$$

$$E_{\mathsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$

$$E_{\mathsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$$

$$E_{\mathsf{Z}}(x)=-\langle x,b_{\mathsf{Z}}
angle+\Psi_{\mathsf{Z}}(x)$$

$$\mathsf{Z}\in\{\mathsf{X},\mathsf{H},\mathsf{Y}\}$$

$$h_{\star} = (\nabla \Psi_{\mathsf{H}}^*)(Wx + V^{\top}y + b_{\mathsf{H}})$$

$$\Psi(h) = \frac{1}{2} ||h||^2 + \iota_{\mathbb{R}_+}(h)$$

$$E_{\mathsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$
 $E_{\mathsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$ $E_{\mathsf{Z}}(x)=-\langle x,b_{\mathsf{Z}}
angle+\Psi_{\mathsf{Z}}(x)$ $\mathsf{Z}\in\{\mathsf{X},\mathsf{H},\mathsf{Y}\}$

$$h_{\star} = (\nabla \Psi_{\mathsf{H}}^{*})(Wx + V^{\mathsf{T}}y + b_{\mathsf{H}})$$

$$\Psi(h) = \frac{1}{2}||h||^{2} + \iota_{\mathbb{R}_{+}}(h)$$

$$h_{\star} = \text{ReLU}(Wx + V^{\mathsf{T}}y + b_{\mathsf{H}})$$

$$E_{ extsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$
 $E_{ extsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$ $E_{ extsf{Z}}(x)=-\langle x,b_{ extsf{Z}}
angle+\Psi_{ extsf{Z}}(x)$ $Z\in\{ extsf{X},\!H,\!Y\}$

$$h_{\star} = (\nabla \Psi_{\mathsf{H}}^{*})(Wx + V^{\top}y + b_{\mathsf{H}})$$
$$y_{\star} = (\nabla \Psi_{\mathsf{Y}}^{*})(Vh + b_{\mathsf{Y}})$$

$\Psi(h)$	$(\nabla \Psi^*)(t)$
$\frac{1}{2} \ h\ ^2$	t
$\frac{1}{2} h ^2 + \iota_{\mathbb{R}_+}(h)$	$\mathrm{relu}(t)$
$\sum_{j} (\phi(h_j) + \phi(1 - h_j)) + \iota_{[0,1]^d}(h)$	sigmoid(t)
$\sum_{j} \left(\phi \left(\frac{1+h_{j}}{2} \right) + \phi \left(\frac{1-h_{j}}{2} \right) \right) + \iota_{[-1,1]d}(h)$	tanh(t)
$-\mathcal{H}(h) + \iota_{\Delta}(h)$	softmax(t)

Table 1: Examples of regularizers $\Psi(h)$ corresponding to some common activation functions, where $\phi(t) = t \log t$.

$$E_{\mathsf{XH}}(x,h)\!=\!-\langle h,\!Wx
angle$$

$$E_{\mathsf{HY}}(h,\!y)\!=\!-\langle y,\!Vh
angle$$

$$E_{\mathsf{Z}}(x)=-\langle x,b_{\mathsf{Z}}
angle+\Psi_{\mathsf{Z}}(x)$$

$$\mathsf{Z}\in\{\mathsf{X},\mathsf{H},\mathsf{Y}\}$$

$$h_{\star}\!=\!(
abla\Psi_{\mathsf{H}}^{*})(Wx\!+\!V^{\top}y\!+\!b_{\mathsf{H}}),$$
 $y_{\star}\!=\!(
abla\Psi_{\mathsf{Y}}^{*})(Vh\!+\!b_{\mathsf{Y}}).$ (For **k** iterations.)

Unrolling the UNN

k=3

Unrolling the UNN

k=3

Unrolling the UNN

k=3

i=1

k=3

k=3

k=3

k=3

k=3

The unrolled computation ~ FFNN with skip connections and shared weights.

We can train the parameters effectively using standard gradient methods.

Experiments

Image Classification and Visualization

- → Convolutional hidden layers
- \rightarrow Forward direction: $y_*(x)$
- → Backward direction: x_{*}(y)

Image Classification and Visualization

- → Convolutional hidden layers
- \rightarrow Forward direction: $y_*(x)$
- \rightarrow Backward direction: $x_*(y)$

Structured UNNs for Dependency Parsing

Structured UNNs for Dependency Parsing

- → Structured factors
- → Higher-order factors

Structured UNNs for Dependency Parsing

Language	k = 1	k=2	k = 3	k=4	k = 5
UNLABELED ATTACHMENT SCORE					
CS	93.79	93.83	93.82	93.60	93.77
HU	85.11	85.77	84.47	85.13	84.09
TE	89.72	89.72	90.00	88.45	87.75
MODIFIER LIST ACCURACY					
CS	84.46	84.82	84.93	84.12	84.49
HU	64.13	66.07	64.37	62.91	64.13
TE	72.87	72.87	73.68	66.80	65.99
EXACT MATCH					
CS	59.17	60.76	60.92	59.42	59.84
HU	21.13	23.40	24.15	23.40	21.51
TE	75.69	77.08	79.17	71.53	70.14

Undirected Attention Mechanism

30 29 28 ? ? 25 24 23 22 21 20

Undirected Attention Mechanism

→ Undirected, "auto-encoding" kind of attention mechanism

30 29 28 ? ? 25 24 23 22 21 20

Undirected Attention Mechanism

Undirected Neural Networks

https://github.com/deep-spin/unn

→ Combine the representational strengths of factor graphs and of neural networks.

Undirected Neural Networks

https://github.com/deep-spin/unn

Undirected Neural Networks

- → Combine the representational strengths of factor graphs and of neural networks.
- → Flexible framework for specifying computations that can be performed in any order.

https://github.com/deep-spin/unn

Undirected Neural Networks

- → Combine the representational strengths of factor graphs and of neural networks.
- → Flexible framework for specifying computations that can be performed in any order.
- → Unstructured and structured examples for three tasks.

https://github.com/deep-spin/unn

Undirected Neural Networks

- → Combine the representational strengths of factor graphs and of neural networks.
- → Flexible framework for specifying computations that can be performed in any order.
- → Unstructured and structured examples for three tasks.
- → Subsume and extend many existing architectures: feed-forward, recurrent, self-attention networks, auto-encoders, and networks with implicit layers (in the paper).

https://github.com/deep-spin/unn

Undirected Neural Networks

- → Combine the representational strengths of factor graphs and of neural networks.
- → Flexible framework for specifying computations that can be performed in any order.
- → Unstructured and structured examples for three tasks.
- → Subsume and extend many existing architectures: feed-forward, recurrent, self-attention networks, auto-encoders, and networks with implicit layers (in the paper).

https://github.com/deep-spin/unn