

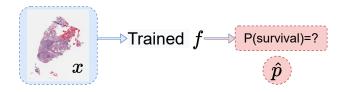
Deep Probability Estimation

Sheng Liu*, Aakash Kaku*, Weicheng Zhu*, Matan Leibovich*, Sreyas Mohan*, Boyang Yu, Haoxiang Huang, Laure Zanna, Narges Razavian, Jonathan Niles-Weed, Carlos Fernandez-Granda

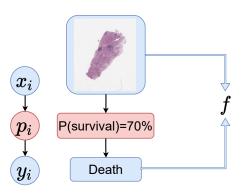
Goal: Estimate probability of uncertain events from high-dimensional input (images, videos)

Not equivalent to classification because of inherent (aleatoric) uncertainty

Probability estimation via deep learning



Training



 X_i

 x_i Age z_i

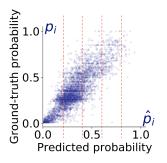
$$x_i$$
 Age z_i $p_i = \frac{z_i}{100}$

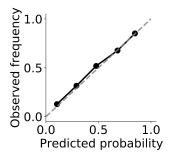
$$20 \qquad 0.2$$

Xį	Age z _i	$p_i = \frac{z_i}{100}$	Уi
7.	20	0.2	0

Xį	Age z _i	$p_i = \frac{z_i}{100}$	Уi
	20	0.2	0
	70	0.7	1

Evaluation

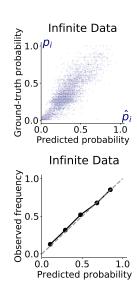




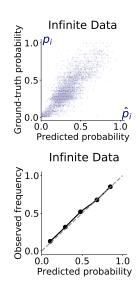
Cross-entropy

Standard cross-entropy loss is a proper scoring rule

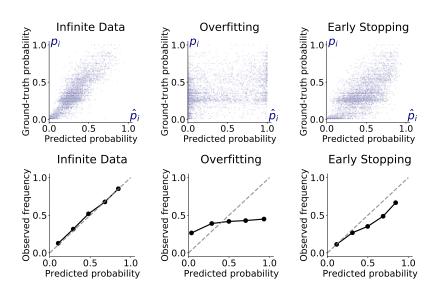
Probabilities estimated by minimizing cross entropy are well calibrated in an "infinite" data regime



What happens if dataset is finite?



What happens if dataset is finite?

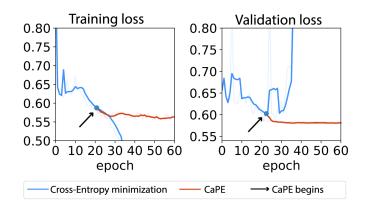


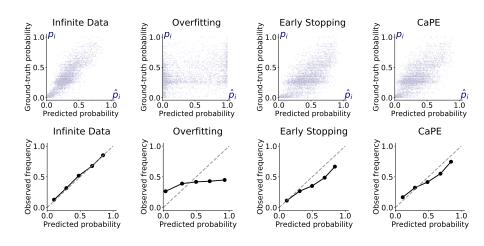
Calibrated Probability Estimation (CaPE)

Goal: Improve model while remaining calibrated

- 1. Minimize cross-entropy loss until memorization begins
- 2. Alternate between:
 - Enforcing calibration
 - Minimizing cross entropy

Calibrated Probability Estimation (CaPE)

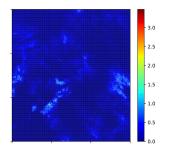




Real-world datasets

Weather Forecasting

Will it rain?
Radar map of past precipitation



Collision Prediction

Will there be a collision?

Dashboard video



Survival Forecasting

Will a patient die in 5 years? Histopathology image

Results

The Brier Scores of baseline models, scaled by 0.01.

Method	Cancer Survival	Weather forecasting	Collision Prediction
CE early-stop	23.96	20.57	8.59
Temperature	23.73	20.21	8.51
Platt Scaling	23.33	19.53	8.23
Dirichlet Cal.	24.08	21.89	8.78
Mix-n-match	23.67	20.21	8.52
Focal Loss	23.31	20.27	9.82
Entropy Reg.	23.62	19.77	11.10
MMCE Reg.	23.73	20.12	8.48
Deep Ens.	23.47	18.82	8.55
CaPE (bin)	23.20	18.37	8.18
CaPE (kern.)	23.18	18.39	8.13

Conclusions

▶ Deep networks can be effective for probability estimation

Conclusions

- Deep networks can be effective for probability estimation
- Exploiting early learning and enforcing calibration can improve probability estimates

Conclusions

- Deep networks can be effective for probability estimation
- Exploiting early learning and enforcing calibration can improve probability estimates
- More benchmark datasets are needed!

Acknowledgements

Research partially supported by NSF and NIH $\,$