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Probability Estimation

Goal: Estimate probability of uncertain events from high-dimensional input
(images, videos)

Not equivalent to classification because of inherent (aleatoric) uncertainty



Probability estimation via deep learning
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Synthetic Dataset: Face-based Risk Prediction

Face-Age dataset from Age Progression/Regression by Conditional
Adversarial Autoencoder. Zhang, Z., Song, Y., and Qi, H., CVPR 2017
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Synthetic Dataset: Face-based Risk Prediction
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Synthetic Dataset: Face-based Risk Prediction
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Face-Age dataset from Age Progression/Regression by Conditional
Adversarial Autoencoder. Zhang, Z., Song, Y., and Qi, H., CVPR 2017



Evaluation
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Cross-entropy

Standard cross-entropy loss is a proper scoring rule

Probabilities estimated by minimizing cross entropy are well calibrated
in an "infinite" data regime



Face-based Risk Prediction
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Face-based Risk Prediction
What happens if dataset is finite?

Infinite Data
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Face-based Risk Prediction

What happens if dataset is finite?

Infinite Data
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Calibrated Probability Estimation (CaPE)

Goal: Improve model while remaining calibrated
1. Minimize cross-entropy loss until memorization begins

2. Alternate between:

» Enforcing calibration

» Minimizing cross entropy



Calibrated Probability Estimation (CaPE)
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Face-based Risk Prediction
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Real-world datasets

Weather Forecasting

Will it rain?

Radar map of past precipitation
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Collision Prediction

Will there be a collision?

Dashboard video

Survival Forecasting

Will a patient die in 5 years?

Histopathology image




Results

The Brier Scores of baseline models, scaled by 0.01.

Method Cancer Survival ~ Weather forecasting  Collision Prediction
CE early-stop 23.96 20.57 8.59
Temperature 23.73 20.21 8.51
Platt Scaling 23.33 19.53 8.23
Dirichlet Cal. 24.08 21.89 8.78
Mix-n-match 23.67 20.21 8.52
Focal Loss 23.31 20.27 9.82
Entropy Reg. 23.62 19.77 11.10
MMCE Reg. 23.73 20.12 8.48
Deep Ens. 23.47 18.82 8.55
CaPE (bin) 23.20 18.37 8.18

CaPE (kern.) 23.18 18.39 8.13




Conclusions

» Deep networks can be effective for probability estimation
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Conclusions

» Deep networks can be effective for probability estimation

» Exploiting early learning and enforcing calibration can improve
probability estimates

» More benchmark datasets are needed!
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