

Scalable Computation of Causal Bounds

Madhumitha Shridharan

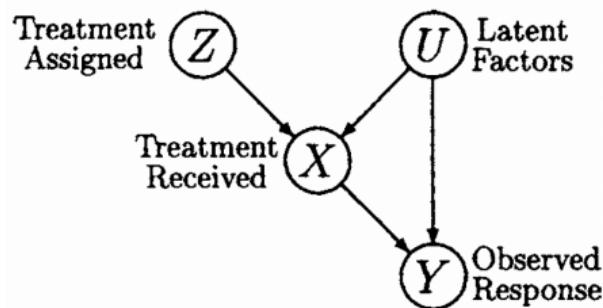
Joint Work with Garud Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

June 24, 2022

Problem

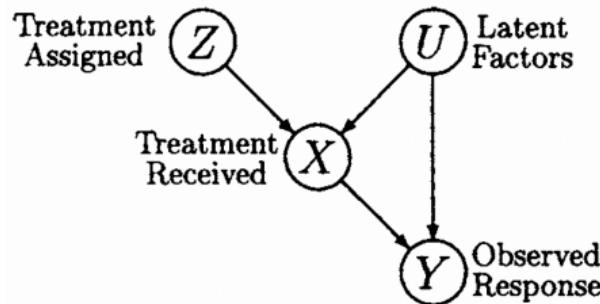
- ▶ Consider the following instrumental variable setting with $X, Y, Z \in \{0, 1\}$ i.e. binary:



- ▶ **Goal:** Bounds for query $\mathbb{P}(Y|do(X))$ given distribution $\mathbb{P}(X, Y|Z)$ from observational data.

Prior Work: Modeling unobserved confounders

- ▶ For fixed U : X is a function of Z , and Y is a function of X .



- ▶ **Insight:** Only need to model impact of U on the **dependence** between variables.

Prior Work: Modeling unobserved confounders (contd)

- ▶ Define
 - ▶ $\mathcal{F} = \{f : f \text{ is a function from } Z \rightarrow X\}$
 - ▶ $\mathcal{G} = \{g : g \text{ is a function from } X \rightarrow Y\}$
- ▶ U effectively selects one function each from \mathcal{F} and \mathcal{G}

Prior Work: Modeling unobserved confounders (contd)

- ▶ Define
 - ▶ $\mathcal{F} = \{f : f \text{ is a function from } Z \rightarrow X\}$
 - ▶ $\mathcal{G} = \{g : g \text{ is a function from } X \rightarrow Y\}$
- ▶ U effectively selects one function each from \mathcal{F} and \mathcal{G}
- ▶ Index elements in \mathcal{F} and \mathcal{G} can be indexed by $r = (r_X, r_Y) \in R = \{1, \dots, 4\}^2$
 - ▶ f_{r_X} denotes the r_X -th function from \mathcal{F}
 - ▶ g_{r_Y} denotes the r_Y -th function from \mathcal{G}
- ▶ $|R|$ exponential in the number of arcs

Prior work: Bounds via linear programming

- ▶ Variable for the LP are $q_{r_X r_Y} = \mathbb{P}(r_X, r_Y)$.

Prior work: Bounds via linear programming

- ▶ Variable for the LP are $q_{r_X r_Y} = \mathbb{P}(r_X, r_Y)$.
- ▶ Constraints of the LP:

$$\mathbb{P}(X = x, Y = y | Z = z) = \sum_{(r_X, r_Y) \in R_{xy.z}} q_{r_X r_Y}$$

where

$$R_{xy.z} = \{(r_X, r_Y) : f_{r_X}(z) = x, g_{r_Y}(z) = y\}, \quad (1)$$

denote the set of r -values that map $z \mapsto (x, y)$.

Prior work: Bounds via linear programming

- ▶ Variable for the LP are $q_{r_X r_Y} = \mathbb{P}(r_X, r_Y)$.
- ▶ Constraints of the LP:

$$\mathbb{P}(X = x, Y = y | Z = z) = \sum_{(r_X, r_Y) \in R_{xy.z}} q_{r_X r_Y}$$

where

$$R_{xy.z} = \{(r_X, r_Y) : f_{r_X}(z) = x, g_{r_Y}(x) = y\}, \quad (1)$$

denote the set of r -values that map $z \mapsto (x, y)$.

- ▶ Objective of the LP: $\mathbb{P}(Y = 1 | do(X = 1)) = \sum_{(r_X, r_Y) \in R_Q} q_{r_X r_Y}$ where

$$R_Q = \{(r_X, r_Y) : g_{r_Y}(1) = 1\} \quad (2)$$

Prior work: Bounds via linear programming

The bounds α_L/α_U of $\mathbb{P}(Y=1|do(X=1))$ are given by:

$$\begin{aligned}\alpha_L/\alpha_U = \min_q / \max_q \quad & \sum_{(r_X, r_Y) \in R_Q} q_{r_X r_Y} \\ \text{s.t.} \quad & \sum_{(r_X, r_Y) \in R_{x,y,z}} q_{r_X r_Y} = \mathbb{P}(X=x, Y=y|Z=z), \quad \forall(x, y, z) \\ & q \geq 0,\end{aligned}$$

Prior work: Bounds via linear programming

The bounds α_L/α_U of $\mathbb{P}(Y=1|do(X=1))$ are given by:

$$\begin{aligned}\alpha_L/\alpha_U = \min_q / \max_q \quad & \sum_{(r_X, r_Y) \in R_Q} q_{r_X r_Y} \\ \text{s.t.} \quad & \sum_{(r_X, r_Y) \in R_{x,y,z}} q_{r_X r_Y} = \mathbb{P}(X=x, Y=y|Z=z), \quad \forall (x, y, z) \\ & q \geq 0,\end{aligned}$$

Number of variables grows exponentially with number of edges!

Aggregating Variables

- ▶ Fix a function $h : Z \rightarrow (X, Y)$. Let

$$R_h = \left\{ (r_X, r_Y) \in R : \begin{array}{l} (f_{r_X}(0), g_{r_Y}(f_{r_X}(0))) = h(0) \\ (f_{r_X}(1), g_{r_Y}(f_{r_X}(1))) = h(1) \end{array} \right\} \quad (3)$$

denote the set of (r_X, r_Y) values consistent with h .

Aggregating Variables

- ▶ Fix a function $h : Z \rightarrow (X, Y)$. Let

$$R_h = \left\{ (r_X, r_Y) \in R : \begin{array}{l} (f_{r_X}(0), g_{r_Y}(f_{r_X}(0))) = h(0) \\ (f_{r_X}(1), g_{r_Y}(f_{r_X}(1))) = h(1) \end{array} \right\} \quad (3)$$

denote the set of (r_X, r_Y) values consistent with h .

- ▶ All $q_{r_X r_Y}$ variables with $(r_X, r_Y) \in R_h$ contribute to the **same** two constraints:

$$(x, y, z) = (h(0), 0) \quad (x, y, z) = (h(1), 1)$$

Aggregating Variables

- ▶ Fix a function $h : Z \rightarrow (X, Y)$. Let

$$R_h = \left\{ (r_X, r_Y) \in R : \begin{array}{l} (f_{r_X}(0), g_{r_Y}(f_{r_X}(0))) = h(0) \\ (f_{r_X}(1), g_{r_Y}(f_{r_X}(1))) = h(1) \end{array} \right\} \quad (3)$$

denote the set of (r_X, r_Y) values consistent with h .

- ▶ All $q_{r_X r_Y}$ variables with $(r_X, r_Y) \in R_h$ contribute to the **same** two constraints:

$$(x, y, z) = (h(0), 0) \quad (x, y, z) = (h(1), 1)$$

- ▶ Therefore, the LP can be reformulated as

$$\begin{array}{ll} \min_q & \sum_{h \in H} c_h q_h \\ \text{s.t.} & \sum_{h \in H : h(z) = (x, y)} q_h = p_{x y . z}, \quad \forall (x, y, z) \\ & q \geq 0, \end{array} \quad (4)$$

H denotes the set of **valid** hyperarcs for which $R_h \neq \emptyset$. Not all hyperarcs are valid!

Main contributions

- ▶ Savings realized only if set H and c_h can be efficiently computed without enumerating over the set R , and we show how to do so.

Main contributions

- ▶ Savings realized only if set H and c_h can be **efficiently computed without enumerating over the set R** , and we show how to do so.
- ▶ Aggregated formulation allows **closed form expression** for bounds in special cases.

Closed Form Bounds: Multi-Cause Setting with Unobserved Confounders

- ▶ $T_i, i = 1, \dots, 5$, indicates whether the patient was prescribed treatment i
- ▶ Y indicates the progression of the disease in the patient.
- ▶ $C_i, i = 1, \dots, 2$, indicates the presence of pre-existing condition i in the patient
- ▶ U_A is an unobserved confounder (e.g. a patient characteristic)
- ▶ U_B is an unobserved confounder (e.g. doctor biases, treatment preferences)

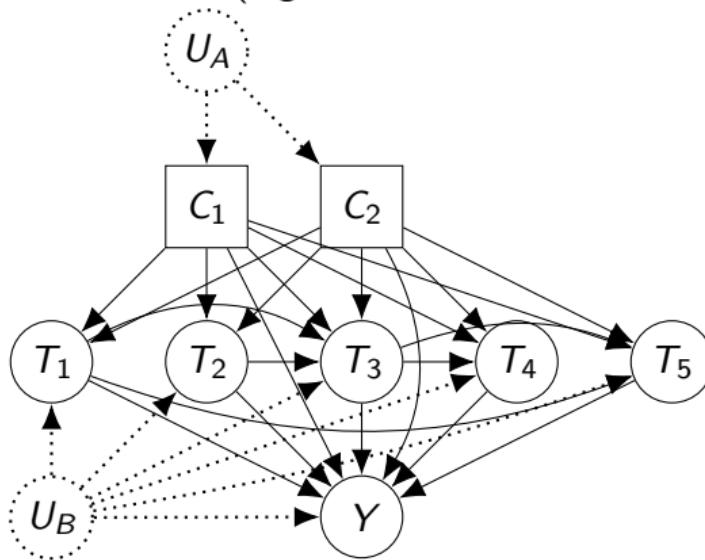


Figure: Computing $E[Y|do(\mathbf{T}, \mathbf{C})]$ in Closed Form