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Problem
▶ Consider the following instrumental variable setting with X,Y,Z ∈ {0, 1} i.e.

binary:

▶ Goal: Bounds for query P(Y|do(X)) given distribution P(X,Y|Z) from
observational data.
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Prior Work: Modeling unobserved confounders
▶ For fixed U: X is a function of Z, and Y is a function of X.

▶ Insight: Only need to model impact of U on the dependence between variables.
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Prior Work: Modeling unobserved confounders (contd)
▶ Define

▶ F = {f : f is a function from Z → X}
▶ G = {g : g is a function from X → Y}

▶ U effectively selects one function each from F and G

▶ Index elements in F and G can be indexed by r = (rX, rY) ∈ R = {1, . . . , 4}2

▶ frX denotes the rX-th function from F
▶ grY denotes the rY-th function from G

▶ |R| exponential in the number of arcs
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Prior work: Bounds via linear programming
▶ Variable for the LP are qrXrY = P(rX, rY).

▶ Constraints of the LP:

P(X = x,Y = y|Z = z) =
∑

(rX,rY)∈Rxy.z

qrXrY

where

Rxy.z = {(rX, rY) : frX(z) = x, grY(x) = y}, (1)

denote the set of r-values that map z 7→ (x, y).

▶ Objective of the LP: P(Y = 1|do(X = 1)) =
∑

(rX,rY)∈RQ
qrXrY where

RQ = {(rX, rY) : grY(1) = 1} (2)
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Prior work: Bounds via linear programming
The bounds αL/αU of P(Y = 1|do(X = 1)) are given by:

αL/αU = minq / maxq
∑

(rX,rY)∈RQ
qrXrY

s.t.
∑

(rX,rY)∈Rxy.z qrXrY = P(X = x,Y = y|Z = z), ∀(x, y, z)
q ≥ 0,

Number of variables grows exponentially with number of edges!
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Aggregating Variables
▶ Fix a function h : Z → (X,Y). Let

Rh =

{
(rX, rY) ∈ R :

(
frX(0), grY(frX(0))

)
= h(0)(

frX(1), grY(frX(1))
)
= h(1)

}
(3)

denote the set of (rX, rY) values consistent with h.

▶ All qrXrY variables with (rX, rY) ∈ Rh contribute to the same two constraints:

(x, y, z) =
(
h(0), 0

)
(x, y, z) =

(
h(1), 1

)
▶ Therefore, the LP can be reformulated as

minq
∑

h∈H chqh
s.t.

∑
h∈H:h(z)=(x,y) qh = pxy.z, ∀(x, y, z)

q ≥ 0,
(4)

H denotes the set of valid hyperarcs for which Rh 6= ∅. Not all hyperarcs are valid!
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Main contributions
▶ Savings realized only if set H and ch can be efficiently computed without

enumerating over the set R, and we show how to do so.

▶ Aggregated formulation allows closed form expression for bounds in special cases.
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Main contributions
▶ Savings realized only if set H and ch can be efficiently computed without

enumerating over the set R, and we show how to do so.

▶ Aggregated formulation allows closed form expression for bounds in special cases.
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Closed Form Bounds: Multi-Cause Setting with Unobserved Confounders
▶ Ti, i = 1, . . . , 5, indicates whether the patient was prescribed treatment i
▶ Y indicates the progression of the disease in the patient.
▶ Ci, i = 1, . . . , 2, indicates the presence of pre-existing condition i in the patient
▶ UA is an unobserved confounder (e.g. a patient characteristic)
▶ UB is an unobserved confounder (e.g. doctor biases, treatment preferences)

T1 T2 T3 T4 T5

Y

C1 C2

UB

UA

Figure: Computing E[Y|do(T,C)] in Closed Form


