

Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk

Tianrui Chen, Aditya Gangrade, Venkatesh Saligrama

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

- K arms.
- Drugs & dosages.

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

- K arms.
- Play $A_t \in [1 : K]$.
- Drugs & dosages.
- Treat patient t .

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

- K arms.
- Play $A_t \in [1 : K]$.
- Incur
 - Reward $R_t : \mathbb{E}[R_t | A_t = k] = \mu^k$
 - Safety Risk $S_t : \mathbb{E}[S_t | A_t = k] = \nu^k$
- Drugs & dosages.
- Treat patient t .
- Observe
 - Efficacy
 - Side Effects

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

- K arms.
- Play $A_t \in [1 : K]$.
- Incur
 - Reward $R_t : \mathbb{E}[R_t | A_t = k] = \mu^k$
 - Safety Risk $S_t : \mathbb{E}[S_t | A_t = k] = \nu^k$
- Drugs & dosages.
- Treat patient t .
- Observe
 - Efficacy
 - Side Effects

Tolerated risk level α ; k is **safe** if $\nu^k \leq \alpha$

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

- K arms.
- Play $A_t \in [1 : K]$.
- Incur
 - Reward $R_t : \mathbb{E}[R_t | A_t = k] = \mu^k$
 - Safety Risk $S_t : \mathbb{E}[S_t | A_t = k] = \nu^k$
- Drugs & dosages.
- Treat patient t .
- Observe
 - Efficacy
 - Side Effects

Tolerated risk level α ; k is **safe** if $\nu^k \leq \alpha$

Optimal reward: $\mu^* = \max_k \mu^k$ s.t. $\nu^k \leq \alpha$.

Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle **safety constraints**.

- K arms.
- Play $A_t \in [1 : K]$.
- Incur
 - Reward $R_t : \mathbb{E}[R_t | A_t = k] = \mu^k$
 - Safety Risk $S_t : \mathbb{E}[S_t | A_t = k] = \nu^k$
- Drugs & dosages.
- Treat patient t .
- Observe
 - Efficacy
 - Side Effects

Tolerated risk level α ; k is **safe** if $\nu^k \leq \alpha$

Optimal reward: $\mu^* = \max_k \mu^k$ s.t. $\nu^k \leq \alpha$.

Goal: maximise **reward** while playing **safely**.

Context

- Safety criterion needs round-wise enforcement.

Context

- Safety criterion needs round-wise enforcement.
- Prior work : aggregate control - $\sum \nu^{A_t} \leq \alpha T(1 + o(1))$

Context

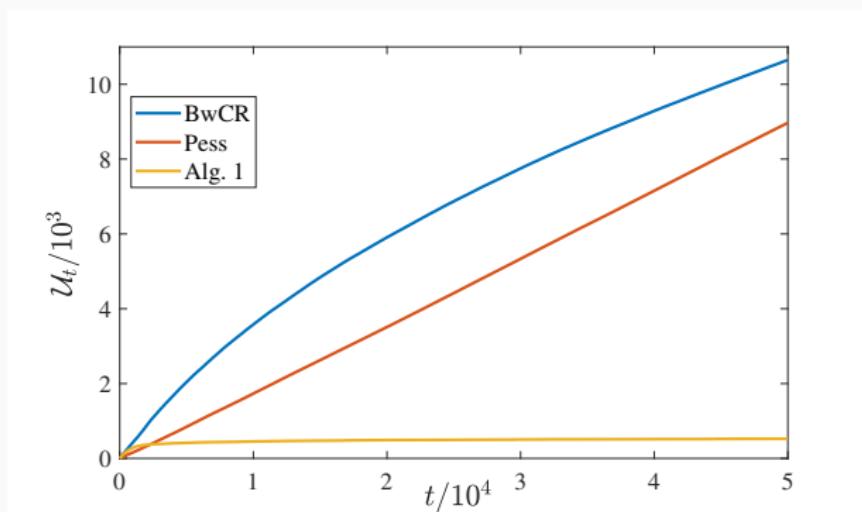
- Safety criterion needs round-wise enforcement.
- Prior work : aggregate control - $\sum \nu^{A_t} \leq \alpha T(1 + o(1))$
- Inappropriate for safety constraints:
 - Switching b/w (unsafe & very effective) and (safe & ineffective) arms.

Context

- Safety criterion needs round-wise enforcement.
- Prior work : aggregate control - $\sum \nu^{A_t} \leq \alpha T(1 + o(1))$
- Inappropriate for safety constraints:
 - Switching b/w (unsafe & very effective) and (safe & ineffective) arms.

Context

- Safety criterion needs round-wise enforcement.
- Prior work : aggregate control - $\sum \nu^{A_t} \leq \alpha T(1 + o(1))$
- Inappropriate for safety constraints:
 - Switching b/w (unsafe & very effective) and (safe & ineffective) arms.



Regret

Regret that captures safety scenarios.

$$\mathcal{R}_T := \sum_{t \leq T} \max (\mu^* - \mu^{A_t}, \nu^{A_t} - \alpha)$$

Regret

Regret that captures safety scenarios.

$$\mathcal{R}_T := \sum_{t \leq T} \max (\mu^* - \mu^{A_t}, \nu^{A_t} - \alpha)$$

- Round-wise safety enforcement in a smooth sense.
- Good schemes must be both effective and safe.

Regret

Regret that captures safety scenarios.

$$\mathcal{R}_T := \sum_{t \leq T} \max(\mu^* - \mu^{A_t}, \nu^{A_t} - \alpha)$$

- Round-wise safety enforcement in a smooth sense.
- Good schemes must be both effective and safe.

Also control # of unsafe rounds

$$\mathcal{U}_T = \sum_{t \leq T} \mathbb{1}\{\nu^{A_t} > \alpha\}.$$

Schemes

Doubly-Optimistic index-based schemes:

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,
 - Reward indices $\rho_t^k \geq \mu^k$

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,
 - Reward indices $\rho_t^k \geq \mu^k$
 - Safety indices $\sigma_t^k \leq \nu^k$

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,
 - Reward indices $\rho_t^k \geq \mu^k$
 - Safety indices $\sigma_t^k \leq \nu^k$
- Permissible set

$$\Pi_t := \{k : \sigma_t^k \leq \alpha\}.$$

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,
 - Reward indices $\rho_t^k \geq \mu^k$
 - Safety indices $\sigma_t^k \leq \nu^k$
- Permissible set

$$\Pi_t := \{k : \sigma_t^k \leq \alpha\}.$$

- Play optimistically from Π_t :

$$A_t \in \arg \max_{k \in \Pi_t} \rho_t^k.$$

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,
 - Reward indices $\rho_t^k \geq \mu^k$
 - Safety indices $\sigma_t^k \leq \nu^k$
- Permissible set
- Play optimistically from Π_t :

$$A_t \in \arg \max_{k \in \Pi_t} \rho_t^k.$$

Reasoning:

- Optimal arm k^* .

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,
 - Reward indices $\rho_t^k \geq \mu^k$
 - Safety indices $\sigma_t^k \leq \nu^k$
- Permissible set
$$\Pi_t := \{k : \sigma_t^k \leq \alpha\}.$$
- Play optimistically from Π_t :

Reasoning:

- Optimal arm k^* .
- If $k^* \in \Pi_t$, and ρ_t is good,

$\#t : \mu^{A_t} < \mu^*$ is small.

$$A_t \in \arg \max_{k \in \Pi_t} \rho_t^k.$$

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,

- Reward indices $\rho_t^k \geq \mu^k$
- Safety indices $\sigma_t^k \leq \nu^k$

- Permissible set

$$\Pi_t := \{k : \sigma_t^k \leq \alpha\}.$$

- Play optimistically from Π_t :

$$A_t \in \arg \max_{k \in \Pi_t} \rho_t^k.$$

Reasoning:

- Optimal arm k^* .
- If $k^* \in \Pi_t$, and ρ_t is good,

$\#t : \mu^{A_t} < \mu^*$ is small.

Critical use of optimistic σ_t^k .

- If σ_t is good,

$\#t : \nu^{A_t} > \alpha$ is small.

Schemes

Doubly-Optimistic index-based schemes:

- For each arm k ,

- Reward indices $\rho_t^k \geq \mu^k$
- Safety indices $\sigma_t^k \leq \nu^k$

- Permissible set

$$\Pi_t := \{k : \sigma_t^k \leq \alpha\}.$$

- Play optimistically from Π_t :

$$A_t \in \arg \max_{k \in \Pi_t} \rho_t^k.$$

Reasoning:

- Optimal arm k^* .
- If $k^* \in \Pi_t$, and ρ_t is good,

$$\#t : \mu^{A_t} < \mu^* \text{ is small.}$$

Critical use of optimistic σ_t^k .

- If σ_t is good,

$$\#t : \nu^{A_t} > \alpha \text{ is small.}$$

Both frequentist and Bayesian ways to design ρ_t^k, σ_t^k .

Theoretical Results

Theorem

For schemes with both Bayesian and Frequentist indices

$$\mathcal{R}_T \leq (1 + o(1)) \sum_{k \neq k^*} \frac{\log T}{2 \max(\Delta^k, \Gamma^k)},$$

$$\mathcal{U}_T \leq (1 + o(1)) \sum_{k: \Gamma^k > 0} \frac{\log T}{2 \max(\Delta^k, \Gamma^k)^2}.$$

Theoretical Results

Theorem

For schemes with both Bayesian and Frequentist indices

$$\mathcal{R}_T \leq (1 + o(1)) \sum_{k \neq k^*} \frac{\log T}{2 \max(\Delta^k, \Gamma^k)},$$

$$\mathcal{U}_T \leq (1 + o(1)) \sum_{k: \Gamma^k > 0} \frac{\log T}{2 \max(\Delta^k, \Gamma^k)^2}.$$

- Efficacy Gap: $\Delta^k := \max(\mu^* - \mu^k, 0)$.
- Safety Gap: $\Gamma^k := \max(\nu^k - \alpha, 0)$.

Theoretical Results

Theorem

For schemes with both Bayesian and Frequentist indices

$$\mathcal{R}_T \leq (1 + o(1)) \sum_{k \neq k^*} \frac{\log T}{2 \max(\Delta^k, \Gamma^k)},$$

$$\mathcal{U}_T \leq (1 + o(1)) \sum_{k: \Gamma^k > 0} \frac{\log T}{2 \max(\Delta^k, \Gamma^k)^2}.$$

- Efficacy Gap: $\Delta^k := \max(\mu^* - \mu^k, 0)$.
- Safety Gap: $\Gamma^k := \max(\nu^k - \alpha, 0)$.

Tight Lower Bounds;

Tight gap-free $\tilde{O}(\sqrt{KT})$ bounds.