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Safe Bandits

Extend Stochastic Multi-Armed Bandits to handle safety constraints.

• K arms.

• Play At ∈ [1 : K ].

• Incur

• Reward R t : E[R t |At = k] = µk

• Safety Risk S t : E[S t |At = k] = νk

• Drugs & dosages.

• Treat patient t.

• Observe

• Efficacy

• Side Effects

Tolerated risk level α; k is safe if νk ≤ α

Optimal reward: µ∗ = maxk µ
k s.t. νk ≤ α.

Goal: maximise reward while playing safely.
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Context

• Safety criterion needs round-wise enforcement.

• Prior work : aggregate control -
∑

νAt ≤ αT (1 + o(1))

• Inappropriate for safety constraints:

• Switching b/w (unsafe & very effective) and (safe & ineffective) arms.
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Regret

Regret that captures safety scenarios.

RT :=
∑
t≤T

max
(
µ∗ − µAt , νAt − α

)

• Round-wise safety enforcement in a smooth sense.

• Good schemes must be both effective and safe.

Also control # of unsafe rounds

UT =
∑
t≤T

1{νAt > α}.
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Schemes

Doubly-Optimistic index-based schemes:

• For each arm k,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Schemes

Doubly-Optimistic index-based schemes:

• For each arm k ,

• Reward indices ρkt ≥ µk

• Safety indices σk
t ≤ νk

• Permissible set

Πt := {k : σk
t ≤ α}.

• Play optimistically from Πt :

At ∈ argmax
k∈Πt

ρkt .

Reasoning:

• Optimal arm k∗.

• If k∗ ∈ Πt , and ρt is good,

#t : µAt < µ∗ is small.

Critical use of optimistic σk
t .

• If σt is good,

#t : νAt > α is small.

Both frequentist and Bayesian ways to design ρkt , σ
k
t .

4



Theoretical Results

Theorem

For schemes with both Bayesian and Frequentist indices

RT ≤ (1 + o(1))
∑
k ̸=k∗

logT

2max(∆k , Γk)
,

UT ≤ (1 + o(1))
∑

k:Γk>0

logT

2max(∆k , Γk)2
.

• Efficacy Gap: ∆k := max(µ∗ − µk , 0).

• Safety Gap: Γk := max(νk − α, 0).

Tight Lower Bounds;

Tight gap-free Õ(
√
KT ) bounds.
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√
KT ) bounds.

5


